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Abstract We establish an affine equivariant, constrained heteroscedastic model and criterion
with trimming for clustering contaminated, grouped data. We show existence of the m.l.e.,
propose a method for determining an appropriate constraint, and design a strategy for finding
reasonable partitions. We finally compute breakdown points of the estimated parameters
thereby showing asymptotic robustness of the method.
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1 Introduction
1.1 Background

Statistical clustering methods start from a statistical model of the data deriving from it, in
general by the ML— or MAP—paradigm, a cluster criterion to be optimized. Various problems,
expected and unexpected, are encountered on this way. First, the criteria do not possess
maxima in general so that special precautions have to be taken. Second, the criteria possess so—
called “local maxima” and “minimum distance partitions” (MDP’s), some of them reasonable
solutions but others containing spurious, undesirable clusters. Third, optimization of the
criteria is not easy. Fourth, the method obtained may not be robust in the sense that deviations
from the model may grossly falsify the result.

Solutions to some of these problems are available. Hathaway [13], following a proposal by
Dennis [5], Evelyn Martin Lansdowne Beale, and James R. Thompson (oral communications),
investigated constraints on the scale parameters V; of a normal mixture model showing that
they mitigated or even avoided some of the problems. We call them the HDBT constraints.
In a slightly different form, Hathaway’s multivariate version reads

Vi = Vi (1)



for some constant ¢ > 0 and all indices 7, £. The symbol > stands for the semi-definite ordering
on the space of symmetric matrices and the constant ¢ is necessarily bounded above by 1.
The constraints are affine equivariant and mean that the covariance matrices V; must not be
too different in size and shape. They are a generalization of homoscedasticity, i.e., equality
of all covariance matrices, which they contain as the special case ¢ = 1. We also define the
HDBT-ratio of a g-tuple V = (V}) of positive-definite matrices as the maximum ¢ for which
the Constraints (1) hold. It can be computed as

rippr(V) = max{e | V; = ¢V for all j,¢} = min A (Vv ), (2)
]7 9

where A\1(A), ..., \i(A) denote the d eigenvalues of a symmetric d by d matrix A. The HDBT-
ratio of a partition is that of its scatter matrices. Hathaway showed in the univariate context
that, besides guaranteeing the ML-estimate and its consistency, the HDBT constraints re-
moved many undesirable local solutions.

Although there is no no formal, mathematical definition of “cluster” and “outlier,” both play
an important role in reality. Clustering methods deemed to be robust actually break down
under the influence of a single gross outlier, Garcia-Escudero and Gordaliza [9]. Nevertheless
there are nowadays some robust trimming methods based on classification models. Cuesta—
Albertos et al. [4] and Garcia-Escudero and Gordaliza [9] proposed a trimmed extension of the
k—means algorithm conjecturing on the basis of empirical studies that its breakdown point ap-
plied to “well-structured” data sets could be large. We [7] undertook a mathematical analysis
of a trimmed homoscedastic classification model obtaining among other things a high asymp-
totic breakdown point of the covariance matrices. The mean values turn out to be more fragile
but we were able to show that their ML estimates, too, are robust if matters are restricted
to well-separated data sets. The majority of data sets is neither spherical nor homoscedastic
and it is desirable to extend these methods and results to the general heteroscedastic case.
However, it is well known that homoscedasticity cannot be dispensed with without cost since
the very existence of an ML or MAP estimate already poses a problem. Moreover, one cannot
expect robustness if clusters with arbitrarily different covariance matrices are allowed.

To our knowledge, the first heteroscedastic, normal classification model with full covariance
structure and trimming was Rocke and Woodruff’s [21] MINO. They used cardinality con-
straints in order to enforce the existence of ML—estimates. These constraints prevent the
scatter matrices from approaching singularity if the data are in general position. In [8] we ex-
tended their method to MAP estimation and showed that their algorithm leads to a standard
problem from combinatorial optimization, A-assignment, a special transportation problem.
Despite trimming, these methods do not act robustly on all data sets. Garcia-Escudero et
al. [10] present a constrained heteroscedastic trimming algorithm relaxing the requirements
on sphericity in [9] and of equality of shapes in [7]. They also prove convergence. However,
their constraints lack affine equivariance. Here, we propose and analyse a robust, affine equiv-
ariant, heteroscedastic, full normal classification model. Specializations to normal submodels
are immediate and left to the interested reader.

1.2 Outline

In Sect. 2, we start from a statistical model with “spurious” outliers deriving from it a trimmed
cluster criterion. Its maximum exists if some constraint is applied. Besides cardinality con-
straints [21, 8], it is also possible to restrict the scale parameters of a normal model by the
HDBT Constraints (1), Lemma 2.1. This approach leads to an affine equivariant Trimmed



Determinant Criterion, TDC. We propose and substantiate an iterative and alternating re-
duction step for finding MDP’s w.r.t. the posterior density. It consists of three successive
steps, ML-estimation, MAP-classification, and trimming,.

Unfortunately, the optimal partitions turn out to be undesirable in many cases of real and
synthetic data sets, see Figs. 1, 3, and 5. Although they provide optimal fit of estimated
populations and clusters they may be unbalanced in the sense that their HDBT ratio is
excessively small. In most applications, cluster balance turns out to be an important asset of
a credible solution. Since the solution with the best fit often lacks sufficient balance we need
a trade-off between the two and solutions which combine a large posterior density with a
large HDBT ratio are more promising. This means that we are facing a problem of biobjective
optimization. Making a compromise by optimizing the target function under a fixed constraint
¢ is not advisable for two reasons. First it introduces a parameter in the algorithm that should
be estimated. What is more, the optimal solution under the HDBT constraints is hard to find,
at least in the multivariate case. The crux is the estimation step. In Sect. 2.4, we propose
instead a heuristic method based on a plot of the posterior density vs. the HDBT ratio for
finding reasonable partitions together with a constant c.

The aim of a trimming algorithm is robustness. We show here that, as an additional bene-
fit, the HDBT-constraints render the TDC robust. Mutatis mutandis, the properties of the
homoscedastic case [7] remain valid if the HDBT constraints are used instead. Constraints
serving a similar purpose can be designed for statistical models other than normality. The
method first uses the number of clusters and the number of discarded elements as fixed pa-
rameters. In Sect. 2.5, we comment on their choice.

In Sects. 3 and 4, we offer a theoretical analysis of the robustness of our algorithm showing first
that the estimates of the covariance matrices are indeed robust under the HDBT constraints.
The same cannot be said about the location parameters if arbitrary data sets are allowed,
Sect. 4. However, the question of their robustness has an affirmative answer for data sets
that possess a certain separation property. These results are obtained from a mathematical
analysis of breakdown points.

Thus, the consideration of HDBT ratio and constraints serves five purposes: it guarantees a
solution, it reduces local optima, it avoids spurious clusters, it adds robustness, and it is a
key to feasible solutions. The larger the constraint ¢ the more robust the method turns out
to be. In the final Sect. 5 we report on our experience with two data sets.

1.3 Notation

The symbol E denotes some sample space, our basic data set is D = (z1,...,z,) C E, and
R C D denotes the generic r—element subset of D, r < n. The notation 1 : 1.n — 0..g
denotes the generic assignment of the n data points to g classes 1..g or to 0. The assignment
of data point x; is £;. If £; = 0 then observation 7 is not assigned to a class, it is discarded. An
assignment 1 is admissible if n —r indices are discarded. The set of all admissible assignments
is denoted by A,. The assignment 1 defines g clusters C; = C;(1) = {i | £; = j} of cardinalities
nj =n;(l), j € 1..g. We allow one or more clusters to be empty.

We consider a distributional model on E consisting of g components. Its parameters are
denoted by v = (71, ...,7,). If E = R? and if the model is normal then v; = (m;, V;) with the
location parameters m; € R? and the covariance matrices V; € PD(d), the cone of symmetric,



positive-definite d by d matrices. We also gather m = (my,...,my) and V = (V1,...,V]).
We will often need the positive-semi-definite (Lowner) ordering < on PD(d).

Estimates of the parameters v;, m;, and V; w.r.t. the clusters of an assignment 1 are denoted
by 7;(1), m;(1), and Vj(1), respectively. We also abbreviate v(1) = (y1(1),...,7v4(1)), m(l) =
(m1(1),...,mg()), V(1) = (Vi(1),...,V,(1)). A bar as in T denotes sample means and W
and S denote SSP-matrices and scatter matrices, respectively, with the additional notations
W;(1) = W(C;(1)) and S;(1) = S(C;(1)). Means and SSP- and scatter matrices of empty

clusters are put to zero.

Finally, a * indicates optimality. So, e.g., I* is an optimal assignment and mj = m;(1*) is the
mean of its jth cluster.

2 Statistical model, criterion, and algorithm

We consider a statistical classification model for a data set D of n observations in some sample
space F. At least r < n of the data are regular, i.e., they are independent draws from one of
g densities f.,,..., fy,, each, v = (71,...,7y) € I CT'1 x--- xT'y. The number of occurrences
of each class is unknown. The remaining n — r observations may, but do not have to be gross
outliers.

In [7] and [8], we established parametric models with trimming for data with so-called “spu-
rious” outliers and computed their ML- and MAP-estimators. Applying these ideas to the
present situation we obtain the following trimmed MAP cluster criterion

—rH((n;(1)/r);) + maxz Z In £, (z:) (3)

to be maximized w.r.t. the admissible assignment 1. Here, 25:1 >0, In fr; (;) is the trimmed
log-likelihood given 1. The use of the entropy H of the cluster proportions n;(1)/r goes back
to Symons [23] and accounts for unequal cluster sizes. It distinguishes the MAP- from the
ML-estimator.

It must be noted that the maximum w.r.t. (7;); required in Eq. (3) does not exist in general. If
the parameters 7; may be chosen freely in the product space I'y x - - - xI'y then the maximum,
if it exists, and the sum over j commute so that the double sum reduces to

> max In £,(C;(1).
j=1

In normal estimation, e.g., the ML-estimate appearing here does not exist if C; is too small.
The problem may be circumvented in various ways. A first is restricting I' (or parts of it) to
a compact subset (together with continuity of the likelihoods vy +— f,(x)). This has the effect
that the estimator looses scale equivariance. A second way requires that each cluster contain
sufficiently many data points together with an assumption on their locations such as “general
position,”! Rocke and Woodruff [21]. If the data are in general position and if we allow only

lany d + 1 elements are affine independent



Figure 1: Two clusters of ten points, each, randomly sampled from N_s,, 1, and Na, 1,, respectively
(separated by the dashed line). Shown are nine almost collinear “spurious clusters.” The partitions
defined by them all mask the genuine partition, their negative log—posteriors falling below its value
65.96. However, the HDBT ratio (2) of the latter is 1/1.69 whereas the largest of the spurious partitions
shown is 1/2757 (the cluster of five points). The optimal unconstrained solution uses the uppermost
horizontal cluster and has a negative log—posterior of 60.95 but an HDBT ratio of 1/66 244.

assignments 1 with cluster sizes > d + 1 then the maximum of Criterion (3) exists with free
parameters and the optimal 1 minimizes the criterion

2rH ((n;(1)/r);) + > nj(1) Indet S;(1);

J=1

here S;(1) is the scatter matrix of cluster j w.r.t. 1. The estimates of means and covariance
matrices are the sample means and scatter matrices of the optimal clusters. However, the
sizes or shapes of the estimated covariance matrices may sometimes be too different to be
credible, cf. Figure 1. We will, therefore, use the HDBT—constraints (1). Letting

V=V.={V=(V); | V=0, Vj =cV, forall j¢el.g},

we show next in the normal case that the cardinality constraints may be replaced with the
HDBT constraints without giving up the maximum of Criterion (3).

2.1 Lemma

Assume that the data are in general position. If » > gd + 1 then, for any assignment 1 € A,
(some clusters may be empty), the minimum of

g
> n(D)(Indet Vi + tr V1 55(1))
7j=1

w.r.t. (V}); €V exists.

Proof. The HDBT constraints imply det V; > det ¢V}, and Vj_1 > cV[l. Hence, we have for
any £ € 1..g

> ni(ndet V; + V(1) = 3 g (Indet ey + eV 715 (1))
J J
= rlndetcV, + ctrV, ' W(1),



where W (1) is the pooled SSP—matrix specified by 1. By assumption there is some cluster, say
¢, of size > d 4 1. By general position, its SSP-matrix is positive definite so that W (1) > eI,
with some constant € > 0 that depends only on the data. Hence

D nj(Indet Vj + trV; ' S;(1)) > rindetcVy +ectr V!
J
As (V}); approaches the boundary of V, i.e., as some V; approaches the boundary of PD(d),

again by the HDBT constraints, so does V. It is well known that this implies that the right,
and hence the left side of the above estimate tends to co. This proves the claim. O

Now standard normal estimation theory shows that, for any admissible assignment 1, the
partial maximizer w.r.t. m; in (3) (here, v; = (m;,V})) is given by the sample means

(D) = {@-(1), if C;(1) # 0,

arbitrary, e.g. 0, otherwise.

Moreover, if optimization over y is performed under the HDBT constraints, by Lemma 2.1,
the whole maximum exists and equals

- . -1g.
mm\é}é{v; ez: In fim; v, (z;) = const — @égz n;(1)(Indet V; + trV; S;(1)).
=1£,=)

This expression contains the scatter matrices S;(1) w.r.t. . Finally, the negative constrained
trimmed MAP—criterion (3) becomes the Trimmed Determinant Criterion

(TDC) rH((n;(1)/r);) +m1n Zn] (IndetV; —|—ter_ISj(l)).

We denote the minimal assignment by 1*, R* = {i | ¢; # 0} is the set of regular elements w.r.t.
I*, and the partition of R* associated with 1* is (CY,...,Cy). There are only few cases where
the minimal parameters V; given 1 are known to us in closed form. One is the unconstrained
model where they are the scatter matrices if clusters are large enough. If the scatter matrices
happen to satisfy the constraints then they are the solutions also in the constrained case.
Another is the homoscedastic case, ¢ = 1, where the common estimate of the V}’s is the
pooled scatter matrix S(1) and the TDC becomes up to an additive constant

r- LB ((ny0)/r);) + %lndet s} (@)

Finally, a univariate case is treated in Proposition 2.3.

The optimal partition may contain empty clusters, an indication that the number of clusters
has been chosen too large. E.g., if a data set is a clear sample from a normal population then
the optimal partition in two clusters will leave one cluster empty. An example is n = r = 4,
D ={0,3,4,7}, and ¢ = 1. The Criterion (4) is

3.66516, for the partition {D, 0},
3.79572, for the partition {{0,3,4}, {7}},
4.39445,  for the partition {{0,3},{4,7}}.



The remaining partitions need not be considered, either by symmetry or since they cannot
be optimal. Hence the method returns a single cluster. Empty clusters become less likely as
c is decreased.

2.2 Minimum distance partitions and optimization

Several strategies for optimizing the criteria derived so far are available, among them local
descent on a suitably defined graph structure on A, and alternating methods of type k-means.
A seeming disadvantage of these methods is their getting stuck in suboptimal solutions such
as local minima or MDP’s. A closer analysis of the situation shows however that particular
suboptimal solutions often deserve more attention than the absolute optimum of the criterion
itself. It is therefore interesting to generate local solutions and MDP’s.

We propose here an alternating method of type k-means for producing MDP’s. It is first
useful to rewrite the posterior density, cf. (3), in a different form:

g
_TH((nj(l)/T)j) + Z Z In f"fj (.I‘Z) = Z (ln n?fl +In f"ﬂzi (l‘z)) = Z Ui e,

j=14;=j 1:4;#0 1:4;#0

with u; ; = In HTJ +1In £, (z;), the posterior density of j for z;. For given parameters -;, this
sum is maximized w.r.t. 1 by assigning each object ¢ according to the MAP discriminant
rule and by discarding the n — r observations with the overall smallest posterior proba-
bilities. Given a labelling 1, the unconstrained maximum in Criterion (3) chooses as v the
(unconstrained) ML-estimate for the retained observations. As a consequence the following
strategy improves the criterion starting from an initial admissible labelling 1. We first keep
the parameters g and r fixed.

Multipoint reduction step

// Input: An admissible labelling I;
// Output: An admissible labelling l,ey, with larger criterion or the response “fail.”

FEstimation: if some cluster C'j(1) does not allow ML-estimation of its parameters, respond
“fail”;
else update each v; with the ML-estimate for C;(l) (no constraints);

Classification: assign each observation ¢ to the cluster j with maximum posterior probability
u;,; to obtain a labelling I;

Trimming: discard the n — r objects ¢ with smallest u; ; from I to obtain lpew;

In the Classification step misfits are removed. In the Trimming step the r observations which
best fit their clusters are retained. Note that both steps may leave one or more clusters
empty. Iteration of the three steps will eventually become stationary since there are only
finitely-many labellings and since the criterion improves. The solution attained at convergence
is self-consistent (or a (free) minimum distance partition) in the sense that partition and
parameters generate each other.

The reduction step disregards the HDBT-constraints which would need the ML-estimate
w.r.t. V. in the Estimation step. In fact, we do not know of a practicable analytical solution of



the associated constrained optimization in Euclidean space for d > 2 and numerical methods
would lead to inefficient overall algorithms. An exception are free MDP’s that happen to
satisfy the constraints — they are automatically constrained MDP’s. On the other hand, the
constant c is unknown and must be estimated together with the assignment and the other
parameters. In Sect. 2.4, we will propose a method based on free MDP’s or free local optima.

We can say more in the univariate case. Given 1, we denote the sample variance of cluster
J by s; and w; = njsj. Our next proposition deals with arbitrary g and covers the general
constrained case if ¢ = 2. It shows that the constrained minima at the boundary of the
constraints depend heavily on the constant ¢, another disadvantage.

2.3 Proposition

Let d = 1, let ¢ > 2, and let » > g + 1. Let 1 be such that the sample variances s; satisfy
s9 > 0 and cs; < s; < sp/c for all j € 3..g, £ < j.2 (In other words, the sample variances

satisfy the constraints except, possibly, for the pair s1, s2.) Then partial minimization w.r.t.
V = (v1,...,v4) in the TDC is solved by

v} = s1, U5 = s2, if es1 < s9 < s1/c,
x _ witwa/c * _ cwitwsy :

U= g U = 7n/1+n2 , if s9 < esq,
* _ witcwy  x _ Wi/cHwr ;

U = T Ve = i, if s1 < cso,

and vj = s5, j € 3..9.

Proof. Let us abbreviate f;(v) = nj(Inv+22). In the present case, partial minimization w.r.t.

(vi,...,v4) in the TDC can be rewritten in the form (omitting the entropy term)
min Vi) = HllIl v min ) min Vs;
v1>0 Z f] J {fl( 1) C’U1SU2§U1/C {f2( 2) c'ue<v <'ue/cZ fJ ] }}
cvp<v;<vg /e, b<j I g<j>3 j=3
>m1n{ v min { v9) + min ’U}}
fi(vr) + oy 0in f2(v2) ;DO fi(v)

= min {f1 v1)+  min f2(U2)}+ij(3j)-

v1>0 cv1<wva<vi/c -
1<va<vy/ >3

The constrained minimizer of fo(vy) w.r.t. vg is

$9, csy < v < s2/c,
vy =q vy, v > sa/e,

vi/e, 1 < cSa,

and we have shown

<mi£1/ E fi(vj) >m1n{f1 vy +f2v2}+g fi(s5). (5)
C'U[ v 'UZ c
Z<] jz3

The function vy — f2(v3) is differentiable, monotone decreasing in |0, css], constant in
[cs2, s2/c], and monotone increasing in [sa/c, oo[. It follows that the sum vy — f1(v1) + f2(v3)

2This presupposes that the clusters 2, ..., g contain at least two elements, each.



has a minimum which is attained in the same interval where the minimum of the unimodal
function fi(vq) lies. The minimizer of the lower bound (5) turns out to be the value v} given
in the proposition.

We have, thus, shown that the target function cannot be less than its value at the parameters
stated in the proposition. The proof will be finished if we show that these parameters satisfy
the constraints. This is true by assumption for all pairs (j,¢), 7, ¢ > 3, and was ensured for the
pair (1,2). The remaining pairs (1,75), (2,7), j > 3, follow from elementary estimates based
on the constraints assumed for (si,s;) and (s2, s;). The condition 7 > g + 1 ensures that the
minimum w.r.t. v; > 0 exists so that v; > 0 for all j. a

2.4 Overall algorithm and choice of the constant ¢

Iteration of multipoint reduction steps strives for labellings with large criteria. If the “fail”
signal does not occur then the iteration stalls at some unconstrained MDP for the reasons
stated before. However, it does not have to represent an interesting solution so that the process
has to be replicated, possibly many times. The number of replications needed depends on the
data set and on the initial assignments.

Two different outcomes of the algorithm just described are possible. It may happen that all
replications output the signal “fail.” This is typically the case if the data set contains very
small clusters or if the number of clusters, g, has been chosen too large. An example is the
attempt to partition a homogeneous data set. In this case, the parameters g and/or r must
be adapted. Reducing r discards very small clusters. Moreover, clusters large enough to allow
estimation of their parameters can be enforced by putting lower bounds on cluster sizes in
the reduction step, cf. [§]

Otherwise, we obtain unconstrained MDP’s and we have to decide which one to use. While
the theoretical results presented in this communication are valid for all constants ¢, not all
lead to reasonable partitions as experience shows. The desired solution cannot be determined
without a further assumption. In most cases, those solutions are interesting that combine
large criterion with large HDBT-ratio. Of course, this is not a law. Rescaling Fig. 1 in such a
way that the five-point cluster becomes spherical, we obtain an oblong, vertical data set which
contains the quintuplet as a region of concentration. This might suggest a partition in five
plus fifteen elements. But we contend that this is not the point of view to be taken in general.
The criterion measures how well the estimated populations fit their clusters. Declaring the
HDBT-ratio of a solution a measure of its balance, we postulate that, in general, it is good
fit combined with high balance that makes a feasible solution. Since it occurs only rarely that
the best fitting solution enjoys high (but not the highest) balance, this leads to a biobjective
optimization problem which calls for a compromise. Here is a simple heuristic method that
finds a well-fitting, balanced partition: Generate a large number of (unconstrained) MDP’s
and display their HDBT-ratios vs. their criteria in a negative double—logarithmic plot as
shown in Figs. 3 and 5. The convex hull of all MDP’s will usually have a knee at its left, lower
part. The extreme point at the knee is the favorite solution. Often, the MDP’s are supported
from below by an almost horizontal line segment and this MDP is found close to its left end.
It is not unusual that the favorite solution has an HDBT-ratio of a few hundred.

The method may also be applied with local optima instead of MDP’s.



2.5 Choice of the parameters g and r

Statistical model and reduction step (or steepest descent) depend on two parameters, the
number of clusters g and the number of retained elements r. So far we have designed a tool
that allows us to establish interesting clusterings for all pairs (g,r). This is a substantial
reduction of the complexity of the data analytic problem. For obvious reasons, r should be
chosen no larger than and close to the number of regular elements in the data set. Since there
are no formal definitions of “cluster” or “outlier,” their numbers are not precisely defined and
there cannot be a clear answer to the question how many clusters and outliers there are. We
can, however, give some guidelines for the selection of g and 7.

Concerning the number of clusters, there are essentially three approaches, cf. [18, 12], cluster
validation, the so-called elbow criterion, and model selection criteria. Cluster validation may
be divided in two branches: tests and validity measures. The classical test, due to Wolfe [25],
is a likelihood ratio test for the hypothesis of k clusters against (k — 1) clusters. Bock [2]
discusses some significance tests for distinguishing between the hypothesis of a homogeneous
population vs. the alternative of heterogeneity. Chen et al. [3] propose a modified likelihood
ratio test for a mixture of two components vs. g > 3. Also normality tests may sometimes
be beneficial in this respect, see the comprehensive review by Mecklin and Mundfrom [17].
Validity measures are functionals of partitions and usually measure the quality of cluster
separation and of cluster homogeneity (or “compactness”); see, e.g., Bezdek et al. [1]. Often,
the total within—cluster sum of squared distances about the centroids is used as a measure
of compactness and the total between—cluster sum of squared distances for separation; cf.
Milligan and Cooper [18] and the abridged presentation of their work by Gordon [12]. The
elbow criterion identifies the number of clusters as the location where the decrease of some
cluster criterion flattens markedly. For a refinement of this method we refer the reader to
Tibshirani et al. [24].

Maximum likelihood and maximum a posteriori estimation tend towards a large number
of clusters. A model selection criterion counteracts this tendency by subtracting a penalty
term from the maximum of the log-likelihood or from the posterior log—density. Schwarz [22]
proposed his popular Bayesian Information Criterion, BIC, for exponential families. In the
uncontaminated case, its penalty term is £ - Inn, ¢ being the total dimension of the para-
metric model. There is some practical evidence that supports BIC as a means for estimating
the number of clusters of mizture models, too; see the discussion in McLachlan and Peel [16],
Ch. 6. Moreover, Kéribin [15] described a family of penalty terms, among them BIC, which
asymptotically as n — oo neither over— nor underestimate the correct number of components
of a mixture model ), In Z?:l 7; f; if the class—conditional populations satisfy certain regu-
larity conditions and the parameters certain constraints. Her interesting result is applicable,
e.g., to Gaussian families if the mean values are bounded and if the covariance matrices are
bounded below in the Lowner ordering by a positive multiple of the identity matrix. In the
case of a mixture, ¢ = ¢(g) is g — 1 (for the mixing rates) plus the sum of the dimensions of
the g population models.

We propose BIC with this number ¢ also for the classification model if separation is sufficiently
good. Indeed, let 1* be the optimal MAP—-assignment and let 7* and v* be the optimal mixing
rates and population parameters of a mixture model under suitable constraints as in Kéribin’s
theorem. For any g, the optimal value of the MAP—criterion (3) is no larger than that of the



mixture model: Assuming without loss » = n, we have

g oy 1*
_nH((nj(l*)/n)j) £33 In gy ey (@) = Z { In eié ) i sz(l*)(azi)}

J=18=j )

(1* ) < 1nH Z nj fv a= () < max In H Z 5 fr; (i)
=1In H Z W;fqu; (Q:Z . (6)
i g

On the other hand, if the data set is well separated in g clusters then f,- (@i) < fqp, (@;) for

all j # (7 and 7} ~ # for all j € 1..g so that, for this g, both ends of the estimate almost
meet:

—nH ((n;( )+ Z Z In £, a1+ () lnHZﬂ' Jrr (). (7)

J=18=j

The combination of Kéribin’s result with the estimate (6) and the approximation (7) supports
BIC as a penalty term also for MAP—partitioning in the case of large data sets and good
separation.

An approach to determining the number of clusters can be combined with a y? goodness—of—
fit test for estimating the number of outliers. In a first step, establish a table of the optimal
partitions for all (reasonable) numbers of clusters, g, and all numbers of discarded elements,
n —r. It is, of course, sufficient to perform the procedure with a lacunary set of values n — r.
Next, reduce the number of possible solutions by validating them w.r.t. absence of outliers:
Select all pairs (g,n — r) for which none of the g clusters is rejected by a x? goodness-of-fit
test, cf. Ritter and Gallegos [20]. If no pair is accepted then the assumptions on the regular
model are questionable. If g admits an acceptable pair (g,n — r), keep the one with largest
r as a candidate. After having run through all values of g, at most one pair is left in each
line of the table so that the complexity of the problem is again substantially reduced. It
remains to choose the best g. Since the number ry of regular observations for the selected
partition with ¢ clusters depends on g, the numbers of objects have to be normalized, e.g.
to n. By consistency of parameter estimation, cf. [8], Theorems 2.1 and 2.2, the value of the
MAP-—criterion (3) increases approximately linearly with the number r, asymptotically, at
least if there is sufficient separation. Therefore, we propose as model selection criterion with
trimming the corrected BIC

argmax{—nH( 7“(91 ) ZZlnf,Y 1) () (29)1 n} (8)

g I j=16=j

3 Robustness

Although criterion and algorithm involve trimming neither the estimates of the means nor
those of the covariance matrices are robust without constraints on the HDBT ratios. In fact,
no matter how r is chosen they break down under the influence of a single outlier. Just
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Figure 2: Non-robustness of Criterion (3) with full normal covariance matrices in the free heteroscedas-
tic case. Data point x3 is replaced with some x4 close to the abscissa and far away. The criterion discards
x7 generating the partition {(x1, z2, %), (4, x5, 26)}

consider the data set consisting of seven points shown in Fig. 2. It is to be subdivided in two
groups with r = 6, i.e., we discard one point. There are two equivalent optimal partitions,
{(z2,x3,24), (x5, 6, 27)}, x1 discarded, and {(z3, x4, 5), (v6,27,21)}, T2 discarded. We now
replace r3 with a distant outlier 4 close to the abscissa, say x5 = (a,a~2) for large a. Although
we allow one point to be discarded, the criterion does not choose the “right” one. In fact, x4
creates together with x1 and x5 a cluster with a small determinant of its scatter matrix which
is very attractive for the optimal partition. This turns out to be {(z1,z2,2}), (x4, x5, z6)}, z7
discarded. As a consequence, neither do mean and largest eigenvalue of the scatter matrix of
the slim cluster remain bounded as a — oo nor does the smallest eigenvalue remain bounded
away from zero.

We show next that the HDBT constraints do not only guarantee existence of a solution but
also robustness.

3.1 Breakdown values

The finite-sample breakdown value of an estimator, Hodges [14] and Donoho and Huber [6],
measures the minimum fraction of gross outliers that can completely spoil the estimate. Two
types of breakdown points are customary, the addition and the replacement breakdown point.
The former refers to the addition of n — r outliers to a data set of r regular observations
and the latter to n — r replacements in a data set of n regular observations. The former is
technically simpler since we have a fized set of regular observations at hand, but there is the
disadvantage that we need two estimators, one for r data and one for n data. By contrast,
in the latter we have to consider all (:f) possible replacements of n — r observations but need
only one estimator for n objects. We deal with replacements.

Let § : A — © an estimator on its natural domain of definition A C E™ of admissible data
sets of length n, e.g., general position for the m.l.e. under normal assumptions. Given m < n,
we say that M € A is an m—modification of D € A if it arises from D by modifying at most
m entries in an (admissible but otherwise) arbitrary way. An estimator 6 “breaks down with
D under m replacements” if the set

{6(M) | M is m—modification of D} C ©

is not relatively compact in ©. Of course, there is no breakdown if © is compact. The individual
breakdown point for the data set D is the number

B(6,D) = ) £n11<1 {E | 0 breaks down with D under m repla,cements}.
<m<n n



It is the minimal fraction of replacements in D that may cause ¢ to break down. The individual
breakdown point is not an interesting concept per se since it depends on a single data set.
It tells the statistician how many gross outliers the data set M under his or her study may
contain without causing excessive damage if the imaginary “clean” data set that should have
been observed were D. Now let K C A be some subclass of admissible data sets. The restricted
breakdown point [7] of § w.r.t. K is

B(6,K) = win 56, D).

The restricted breakdown point depends only on § and the subclass K. It provides information
about the robustness of § if the hypothetic “clean” data set D that should have been observed
instead of the contaminated data set M had been a member of K. Finally, the concept
introduced by Donoho and Huber is the universal breakdown point

B(6) = B(6, A).

It depends solely on the estimator. The restricted breakdown value may be seen as a relaxed
version of it. We have the estimates

B(6) < B(6,K) <B(6,D), Dek.

We deal here with breakdown points of the TDC assessing its robustness via the estimates of
means and covariance matrices. The relatively compact subsets of the parameter space R? of
the means are the bounded sets. A subset of PD(d) is relatively compact if the eigenvalues of
its members are bounded and bounded away from zero. This is equivalent to saying that the
subset is bounded above and below by positive-definite matrices in the positive-definite (or
Lowner) ordering < on the vector space of symmetric matrices.

We first show that the TDC provides an asymptotically robust estimate of the covariance
matrices and compute the universal breakdown point. We need a lemma. It exploits the
pooled SSP-matrix W (1).

3.2 Lemma

Let V €V, let m € R9, and let 1 be an admissible labelling. We have for all £ € 1..g

2In f[R|1,m, V] < —rIndet2mcV; — ctr W (1)V, '

Proof.
2In f[R|Lm,V]=— 3 {nj(l)lndetQWVj + Y (s —mj)ijfl(xi—mj)}
1<j<g ieC, (1)
< - Z {nj(l) Indet 2mcV, + ctr Z (x; —mj)(x; — mj)TV[I}
1<5<yg i€C; (1)
< —rlIndet 2wcVy — ctr Z Z (x; —m;())(xs — mj(l))T‘/[l
1<5<yg iGCj(l)
= —rlndet 2mcV; — ctt W)V, O

The following theorem shows that the robustness of the covariance matrix exceeds even the
number of discarded elements, n — r, unless r is chosen too small.



3.3 Theorem (TDC: universal breakdown point of the estimates of the covariance
matrices)

Assume r > gd + 1.

(a) If 2r > n+ g(d + 1) then the estimates of the covariance matrices remain in a compact
subset of PD(d) that depends only on the original data set D as at most n —r 4+ g — 1
data points are replaced in an arbitrary way.

(b) It is possible to replace n —r + g elements of D in such a way that the largest eigenvalue
of the estimate of some covariance matrix (and hence of all covariance matrices) exceeds
any given number.

(c) If 2r > n 4 g(d + 1) then Byar(n,r,g) = 2249,

n

Proof. (a) We first note that, no matter what the admissibly modified data set M is, the con-
strained maximum posterior density and, hence, the constrained maximum likelihood remains
bounded below by a strictly positive constant that depends only on the original data set D.
Indeed, it is sufficient to compare the optimal solution with the partition that consists of the re-
maining r—g+1 original points in one cluster C; and of g—1 clusters Co = {y2},...,Cy = {y,}
of just one replacement, each. Moreover, choose Vi = --- =V, = I;, m; = 0, and m; = y;,
2<j<g

By assumption, we replace at most n —r + g — 1 <r — (gd 4+ 1) data points so that, for any
assignment, at least one cluster, say ¢, contains at least d 4+ 1 original points T C D. This is
in particular true for an optimal assignment 1*. It follows W (1*) = W(T) > el , by general
position. Lemma 3.2 and the initial remark imply

—rlndet 2V — ctr W(1*)(Vy) ™! > 21n f[R* | I¥, m*, V*] > const > —oo0.

Now, it is well known that the set of matrices V|* for which the left side is bounded below is
a compact subset of PD(d). The HDBT constraints finally imply that the associated set of

g-tuples (Vi,...,Vy) is a compact subset of PD(d)¢. This proves Claim (a).

(b) Modify D by n — r + g replacements at a large distance from each other and from all
original data points to obtain M. Each r—element subset of M contains at least g replacements.
Moreover, there is a cluster C of size at least 2 that contains at least one replacement.
Indeed, if no cluster contains two replacements then each cluster contains at least one and,
by r > gd+1, one of them contains another element. Now, let Cy be such a cluster, let y € Cy
be a replacement, and let z € Cy, = # y. We have

> {(o- TP e T - S - T

= L))"




Now let the parameters (I*, (m}), (V;")) be optimal. Comparing them with the inferior param-
eters (I, (m}), (2V;")) and noting that the entropy terms coincide, we infer from the TDC

0< Zn](l*){ Indet 2V;" + tr(QVJ»*)_ISj(l*) — (Indet V" + tr(Vj*)_lSj(l*))}
J
1 1
=> n;("){dIn2 - §tr(Vj*)_ISj(l*)} <drln2— 5‘51”(‘/;)_1Wg(1*)
J

< drin2 — 1y~ )" () My o).

The estimate (y —z)T (V) 7} (y — ) < 4dr In2 implies that one eigenvalue of V;* exceeds any
positive number as the distance between x and y is chosen large enough.

Claim (c) follows from (a) and (b). O

3.4 Corollary

If r = |[an]| for some o > 1/2 then the universal asymptotic breakdown point of TDC for the
SSP matrices is 1 — a.

As noted after Lemma 2.1, the estimates of the means are the sample means. Contrary to
the covariance matrices their universal breakdown point is low. We need a lemma and denote
scatter and SSP values by the letters s and w, respectively.

3.5 Lemma

Let FFU {z1,...,2g-2} U{y1,y2} € R be a data set of r pairwise distinct elements. If

w({y1,y2}) < 25w(F) then the constrained normal m.le.’s of the parameters v; for the

partition 1 = {F, {z1},...,{2zg—2}, {v1,y2}} are

o — w(F) + w({y1,y2})/c and v
1 T

*
;=

cvy, 2<j<g.
Proof. Putting s; = s(F') and sy = s({y1,¥2}), the TDC requires minimizing the expression
n1<lnv1+ﬂ)+ Z lnvj+2<lnvg+ﬁ) 9)
U1 : Vg
25j<g~-1

w.r.t. (vi,...,v9) € V. We start with the minimum of (9) on the larger set V' = {(v1,...,vy) €
RY | evn <wvj<wyi/e, j € 2.9} 2 V. Since MiN ey, <y; <oy /e N V; = Incvy, dynamic optimization
shows

min (9) =  min {m(lnvl —|—ﬂ> + Z min  Inv, —|—2<lnvg+ ﬁ)}
vey cv1<vg<uvi /e U1 9<j<g-1 cv1<vj<vi /e Vg
=(g—2)lnc+ min {((T—Q)lnvl—l—ﬂ)—|—(21nvg+&)}.

cv1<vg<vi/c U1 Ug

This is a virtual two—cluster problem. The second line of the three cases in Proposition 2.3
shows that, under the assumption % < ¢;75 stated in the lemma, its solution is given by the
claimed values v and v; = cvj. Finally, the vector (vi,cvy...,cv]) lies even in V so that it
is the minimum w.r.t. the smaller parameter set, too. O



3.6 Theorem (TDC: universal breakdown point of the sample means)
Let g > 2.

(a) If n > r+1 and r > gd+ 2 then the estimates of all means remain bounded by a constant
that depends only on the data set D as one observation is arbitrarily replaced.?

(b) Under the standard assumption r > gd + 1 there is a data set such that one sample mean
of the TDC breaks down as two particular observations are suitably replaced.

(c) Under the assumptions of (a) we have Bmean(n,7,9) = 2.

Proof. (a) We show by contradiction that an optimal assignment 1* discards a remote re-
placement. Thus, assume that the replacement y lies in cluster £. The cluster must contain a
second (original) element x since, by the convention, y would otherwise be swapped with a
discarded original element without change of the TDC. Now, by the assumption r > gd + 2,
the retained data points contain at least gd + 1 original elements so that one cluster has at
least d+1 of them. Whether this is cluster ¢ or not, this implies det W (I*) — oo as ||y|| — oo.
We now use Lemma 3.2

21n f[R* | 1, m*, V*] < —rIndet 27cV})" — ctr W (1*) (V)L

It is well known that, given a positive-definite matrix W, the minimum of the function V +—
Indet V + trWV~! is Indet W + d. Hence, the right side in the inequality tends to —oo as
lly]| = oo. This contradicts the fact that the maximum posterior density and, by r < n, the
left side is bounded below by a constant that depends only on the original data.

(b) A proof in the multivariate case requires a subtle construction of a data set. As a main
hurdle one has to avoid point patterns that are almost degenerate and mask the desired
solution just as in Fig. 1. A construction for the case ¢ = 1 appears in [7]. For the sake of
illustration, we treat here general ¢ confining ourselves to the univariate case. Since Claim
(b) is plainly true if r > n — 1, we assume r < n — 2 proceeding in three steps.

(o) Construction of the modified data set M:

Let x;, 1 < i < r — g, be strictly increasing and put F = {z1,..., 2,4}, let K > 0, and
choose 21 < 22 < ... < Zp—p4g—2 such that

(i) z1 —ap—g>Kand 241 —zg > Kforall 1<l <n—r+g—2.
Let 0 < e < cli(_l;),
M={z1,....,2p—g,21,. .., Zn—ryg—2,Y1,Y2}. Plainly, M is in general position.

Let C* be the partition {F,{z1},...,{zg—2},{y1,¥2}} (29-1, -+, Zn—rig—2 discarded).

let y > z,—r4g—2 + €, define the replacements y1 2 = y £ €, and put

(8) The maximum a posteriori density of C* does not depend on K and y:

Let us denote the estimates associated with C* by (R*,(m;)jelng,(v;)jel“g). Since

w({y1,y2}) = 2e? < 25w(F), Lemma 3.5 shows v} = w(FHw(iyl’y?})/c and v = ... =

vy = cvi. Twice the logarithm of the corresponding posterior density equals

2((7“—9)111 (r;g) +2In (%)) —rlnv] —glne—7r(1+In2m).

3In the case of ties the solution is returned that has the largest discarded element.



(7) If K is large enough then no assignment 1 of r points from the set FU{z1,...,2p—p1g—2}
is optimal:

By r < n — 2, the set contains at least r elements. Since #F = r — g and since r > g, any
such assignment 1 creates a cluster Cy = 171(¢) which contains some zj and some other point.
From (i), it follows

w(l) > w(Cp) — oo. (10)

K—o0

Let ((m;) ;¢ 4 (V) j¢1. ,) denote the constrained m.Le. defined by 1. By Lemma 3.2, twice its
log-likelihood is bounded above by

1
—rln(2ncv;) — cw < —r(In2rc®/r +Inw() +1) — —o0, jel.g;

v K—oo
here we have used the maximum of the left side as a function of v; and (10). The claim follows
from ((3) since there are only finitely many Is.

Finally, choose K as in (7). The optimal solution retains at least one y; causing at least one
mean to break down as y — oo. This proves Part (b) in the special case and Part (c) follows
from (a) and (b). O

As a consequence, the asymptotic universal breakdown value of the means is zero. More cannot
be expected. The reason is that the universal breakdown point makes a statement on any data
set for any g, even if these two do not fit together. On the other hand, Gordaliza [11], see also
Garcia—Escudero and Gordaliza [9], carried out experiments with trimmed g-means observing
that the means of a clear cluster structure are hard to break down with the algorithm. We
offer next an analysis of this phenomenon in the present situation.

4 Restricted breakdown point of the sample means

Dealing with the homoscedastic case, we computed in [7] the restricted breakdown point of
the sample means w.r.t. a class of data sets with a certain separation property thus defining
what we mean by a “clear cluster structure.” The separation property defined there is not
satisfied for large data sets so that asymptotic robustness does not follow. Besides carrying
over the theory to the heteroscedastic case we will also remove this weakness here.

The proof of the theorem of this section depends on lemmas which we first state and prove.
Let P = {Pi,...,P;} be a partition of D and let ) # T" C D. The partition T NP =
{TnP,...,TNP,} is the trace of P in T. Let ¢’ > 1 be a natural number and let 7 =
(Ih,...,Ty) be some partition of 7. The common refinement of 7 and P is denoted by
TNP={TxNP; | k<g,j<g} apartition of T (some clusters may be empty). The pooled
SSP—matrix of T' w.r.t. some partition 7 is defined by

W(T) =) W(T).

J<g’
For all (n1,...,ng) € N9 such that n; + ... 4+ ny = r, the entropy satisfies the estimate
—rlng < —rH((n;/r);) <0. (11)

The following proposition states a basic condition which implies robustness of the means.



4.1 Proposition

Let g > 2 and gd+ 1 < r < n, and let ¢ be an integer such that max{2r —n,gd+ 1} < g <.
Assume that D possesses a partition P in g clusters such that, forall T'C D, ¢ < #T < r, and
all partitions 7 of T'in g — 1 clusters (some clusters may be empty), the pooled SSP-matrix
satisfies

det W(T)>¢? max det (%W(Rﬂ P)). (12)
Rre(?),RoT ¢

Then the individual breakdown point of TDC of the means satisfies

/Bme&n(n7g7T7D) 2 (T_q+1)’

S

Proof. Let M be any admissible data set obtained from D by modifying at most r — ¢
elements and let (R*, 1%, (m;)?:v (Vj*)?:l) be an optimal constrained solution for M. We will
show that its means mj are bounded by a number that depends solely on the original data

D. Our proof proceeds in several steps.

(o) The matrices V" are bounded above and below by positive-definite matrices that depend
only on D, not on the replacements:

Let R} be the jth cluster generated by 1*. Since #R* = r, R* = ;?:1 R} has at least ¢ > gd+1
original observations and some R} contains at least d+ 1 original observations. The proof now
finishes as that of Theorem 3.3(a).

(B) If R} contains some original observation, then m} is bounded by a number that depends
only on D:

By (), trW(I*) remains bounded above by a constant which depends solely on the original
data D. Now, let x € R; N D. We have W(I*) = (z —m])(z — m;'f)T and, hence, ||z — m;'fHQ <
tr W (1*) and the claim follows.

(v) If R} contains some replacement then ||mJ|| — oo as the replacement tends to oo:
This is proved like (3) where z is now the replacement.

From (f) and (v) it follows: as the replacements tend to co then, in the long run, each
R%, j € 1..g, consists solely of original observations or solely of modifications. We next put

car =—%(1+1n2n).

‘17 1*
0) —rH((n¥/r);) +In f[R* | I*, m*, V* <cdr—drlnc—zlndet ( ),
7 J ) 2
,

whenever 0 <nj <r for some j:

On account of Lemma 3.2 and the assumption, the left side is strictly bounded above by
dr 1 * * * —1
—drlnc— 5 In 271 — 3 [rIndet(Vi"/c) + tr (WX (Vi /o)™ h)].

Part (a) and normal estimation theory now show that the function A — rlndet(A/c) +
tr (W (1*)(A/c)~1), A = 0, attains its minimum at %(1*) with value r {ln det(w) +d| and
the claim follows.

() R* contains no modification with a sufficiently large norm:



Assume on the contrary that R* contains a large replacement. In view of the remark just
after (), some cluster, say R}, consists solely of replacements. Note that r > #(R*ND) >q.
Let T'=R*ND and let 7T = {R7 N D,...,R; | N D}. From Steiner’s formula we have the
relation W (1*) = W(7T) between the pooled SSP-matrices and Hypothesis (12) implies

det W(I*) > det W(T) > ¢*> max det (iW(R N 73)).

Re(D),ROT c?
Hence,
I 1
2allnc—i—lndetM >2lng+ max Indet-W(RNP). (13)
r Re(D),ROT T

Now, writing m(RNP) = (m(RN Py),...,m(RNP,)) and V(RN P) = LW (RN P), the
pooled scatter matrix, we estimate
rlng+ min  —1In f[R|lzgnp, m(RNP),V(RNP)

Re(M77)

= —cd,r—i—rlng—l—g min _Indet V(RN P)

Re(M77)
< —cgr+ring+ " min Indet V(RNP)
2 7CRe(MNP)
< —cgr+rlng+ T max Indet V(RNP) (14)
2 rére(?)

< —c¢gr +drinec+ gln det V(1%)
< TH((nj/T)J) —In f[R* | I, m*, V¥,

where the last but one and last inequalities follow from (13) and (¢), respectively. Note that
Part (d) is applicable since R* N D # () implies n} > 0 for some j < g and since n; > 0 as
well. The last expression above is the minimum of the TDC. It is no larger than its value at
the partition R NP with the parameters m(RNP) and V(RN P) for all R € (M1'P). By
an elementary property of the entropy, the latter is no larger than the left side of (14). This
contradiction proves Claim (e).

Finally, Part (3) shows that all means m} remain bounded by a number that depends only
on D. This proves the proposition. O

In the remainder of this section, we show that the hypothesis of Proposition 4.1 expresses
actually a separation property. We need more notation. Let g > 2. Given an integer u > 1
and a real number p, 0 < p < 1, we define the number

Quo = maX{QT —n,(g—1)gd + 1, le—u}
-0
Ifn>r>(g—1)gd+1and u>n—(1—p)(r—1) then ¢ = [qy,]| satisfies the assumption
in Proposition 4.1.

Let P, T, and 7 be as in Proposition 4.1. Our next, combinatorial, lemma gives conditions
that secure the existence of sufficiently many elements of 7" in each P; and a large intersection
T}, N P; for some pair (k, j).



4.2 Lemma

Let P = {P,...,P;} be a partition of D in clusters of size > u, let T C D such that
Quo < #T < r,and let T = {T1,...,T,—1} be a partition of T' (some T}’s may be empty).
Then:

(a) For all j, we have #(T' N P;) > o#T.

(b) At least one T}, contains elements of two different P;’s.

(c) There are clusters T}, and P; such that #7;, N P; > (gqf’f)g (>d).

Proof. (a) Assume on the contrary that #(7'N P;) < p#7 for some j. From D O T'U P; we
infer

n>#T+#P—#(TNPj) > #T+u—o#T =u+(1—0)#T > u+(1—0)que > u+n—u

by definition of ¢, ,, a contradiction.

(b) Since p#T > 0 and since there are more P;’s than T}’s, this follows from the pigeon hole
principle with (a).

(c) The observations in T" are spread over the (g — 1)g disjoint sets of the form T, N P;. If (b)
did not hold, we would have #71" < gy, ,, contradicting one of the assumptions. O

The theorem on the breakdown point of the means presented in this section applies to a class
of clustered data sets with a certain separation property which we now present. We put

4.3 The separation property

Let u € N such that 1 <u < n/g and let 0 < p < 1. We denote by L, , . the system of all
d-dimensional admissible data sets D of size n which have the following separation property:

D possesses a partition P in g subsets of size at least u such that, for all subsets T' C D, g, , <
#T < r and for all partitions 7 = {T1,...,T4—1} of T in g — 1 clusters, we have

W(TnP)

—1
: T
1 + ﬁg & I]Il;én[ ) (mTkﬂPj - mTkﬂPZ) ( #T ) (mTkﬂPj - mTkﬁP[)

T NPy, #0, h=3¢
S 2H1aXR€(/3)7R2T det CLQW(RQ'P)
=9 det W (T N P)

(15)

According to Lemma 4.2(b), the minimum extends over at least one triple (k, j,¢), j # ¢, and
by Lemma 4.2(c), the pooled scatter matrix V(7 MP) is bounded below by a positive-definite
matrix which depends only on D. Condition (15) is affine equivariant. We require that the
minimum of the Mahalanobis distances of the submeans of P; and P, appearing on its left-
hand side should be large. Thus, Condition (15) means that the partition P subdivides the
data set in well-separated clusters, it is the “natural” clustering of D. The set £, , . increases
with decreasing u and with increasing o < 1/2.

We show next that any data set D in £, , . satisfies the hypotheses of Proposition 4.1.



4.4 Lemma

Let g > 2,letn >r > (g—1)gd+1,let u € Nand 0 < p < 1satisfy n—(1—p)(r—1) <u <n/g.
Let D € Ly, let T'C D be such that g, , < #1T' < r, and let T = {T},...,T;—1} be a
partition of T' (some T}’s may be empty). We have

1
det W(T) > ¢> max det W (RNP).
rRe(P),R2T €

Proof. An application of [7], Lemma A.3, to each W (T}), 1 < k < g, with partition {7} N
P,..., T, NPy}, 1 <j<g,shows first

k=1
g
QAfjAke
= Z { Z W(Tk N PJ) + Z %Z—T(mTkaj - mTkﬁP[)(mTkﬂPj - mTkﬂPZ)T}u
BTt =1 1<j<t<g TOF

where ap; = #(Tp, N Pj), 1 <j <g,1<k<g. Now use [7], Lemma A.1(b), and Lemma A.1
to estimate

det W(T)
> det W(T MP)-

.
lj Qe _

{1 + Z Z #ZTk (mzynp, — maap,) W(T OP) " (mp,np, — mePe)}

kTt 1<j <t<g

) W(T nP)\-1
> det W(7T N P){l + Ky min  (mrnp; — mTkmpz)T (¥) (mrnp; — mTkaZ)}
k,j#L: #T
T N Py, ;ﬁ 0
and the claim follows from the separation property. O

The conditions on 7 and w imply that the interval [g, o, [ contains some integer so that a
set T' as in Lemma 4.4 exists. A simple reasoning shows that the bounds on « imply ¢ < %.
Furthermore, the inequality n — (1 — 0)(r — 1) < w implies © > n — r + 2. In particular, the
sizes of the natural clusters must exceed the number of discarded elements.

We finally state and prove the main result of this section. If a data set has the separation
property then the TDC is much more robust w.r.t. the mean values than predicted by Theo-
rem 3.6.

4.5 Theorem (TDC: restricted breakdown point of the sample means)
Let ¢ > 2 and let r < n.

(a) Assume r > (g — 1)gd +2 and n — (1 — 9)(r — 1) < u < n/g. Then the restricted
breakdown value of the TDC for the mean values w.r.t. £, , . satisfies

1 ) n—u
Brnean (12, G5 7y Lo p.c) > Emln {n—r-i—l,?“— (9 —1Vgd,r+1— 1_@}.



(b) The individual breakdown point of any data set D € L, , . satisfies

(n—r+1).

S|

ﬁmean(na g,7, D) <

(c) Let 2r—n > (9—1)gd+1, let u € N such that 2(n—7r) < v < n/g, and put p = %ﬁ;r)
(the largest o for fixed u). Then

1
ﬁmean(n, 9,7, Eu,g,c) = 5(77/ —r+ 1).

(A necessary condition for the existence of such a u is the inequality 2(n—r) <n/g—1.)

(d) Under the assumptions of (a), the TDC discards all sufficiently large replacements in a
data set that satisfies the separation property (with some parameters).

Proof. Part (a) is a direct consequence of Proposition 4.1 and Lemma 4.4.

(b) Let M be a data set obtained from D by replacing n —r+ 1 of its elements with a narrow
and distant cluster. The modified data set contains only  — 1 original observations so that the
optimal set R* contains some modification. Then so does C} = Cj(1*) for some j. Lemma A.2
shows that the norm of m} tends to infinity together with the narrow cluster of replacements.

(¢) The hypotheses imply min {n —r+1,r—(¢g—1)gd,r+1— %} =n—r+ 1. Furthermore,
the first condition in (a) follows from the first condition, whereas the second condition in (a)
follows from the choice of ¢ and from second condition. Finally, the condition 2(n —r) < u
implies p > 0. The claim now follows from Parts (a) and (b).

Claim (d) follows from Part (€) of the proof of Proposition 4.1. O

The following corollary of Theorem 4.5 says that the TDC of the means is asymptotically
robust on well-separated, balanced data sets if the natural parameter g is used.

4.6 Corollary

Let g >2,let 0 <n<d<1/g,letr= (n(l—%—i—%ﬂ, let u = [n(é—nﬂ, and let o = 1f?jr§.
g

Then, asymptotically,

1/1
ﬁmean(n’gara £u,g,c) I 5(5 - (5), as n — oQ.

5 Two studies

We illustrate the method described in Sects. 2.2, 2.4, and 2.5 with two examples and first
revisit the simple data set of Fig. 1. As already seen there exist a number of minimum
distance partitions with larger posterior densities than the intended partition. Fig. 3 shows
the negative double-logarithmic posterior-density-HDBT-ratio plot of the MDP’s found for
the heteroscedastic full normal model with two clusters, no discarded elements, and unknown
cluster sizes. According to the method of Sect. 2.4, the most plausible MDP is the one in
the left lower corner close to (66, 0.2). It belongs indeed to the favorite partition of the data
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Figure 3: Synthetic data set of Fig. 1: negative double-logarithmic HDBT-ratio-posterior-
density plot for a large number of minimum distance partitions with two clusters and no
discarded elements.

set in 10 plus 10 elements. The solution close to (61, 4.8) in Fig. 3 with the largest posterior
density represents the uppermost horizontal cluster in Fig. 1.

Our second example is the Tiles data set [19] from archeometry. It can be found under the URL
www.uni-passau.de/ritter . Its objects consist presently of 660 antique roman tiles collected
in the Rhine valley between Strasbourg/France and Frankfurt/Germany. Our questions are:
which tiles originate from the same clay pits and how many clay pits are represented ? Feature
data from X-ray Fluorescence Analysis w.r.t. nineteen minerals and metals are available to
this end, viz., flint SiOy, Titanium dioxide (titania) TiO2, Aluminium oxide (aloxite) Al,Os,
Ferric oxide (rust) FeaO3, Manganese oxide MnO, Magnesium oxide (magnesia) MgO, burnt
lime CaO, Sodium oxide NayO, Potassium oxide K5O, vanadium V, chromium Cr, nickel Ni,
zinc Zm, rubidium Rb, strontium Sr, yttrium Y, zirconium Zr, niobium Nb, and barium Ba.

Although we expect cluster sizes of a hundred or less which are not sufficient for safely
estimating more than a hundred real parameters for each cluster, we used the heteroscedastic
full normal model with unknown cluster sizes (MAP) and unknown number of clusters. A
look at the 2D scatter plots suggests marked correlation between some of the features: SiO-
with MnO, CaQ, Sr, and Zr, TiO9 with Cr and Nb, CaO with Sr, and K2O with Rb. This fact
allows us to reduce the dimension of the sample space by deleting SiOs, TiO4, CaO, and KoO
from the feature list so that d = 15. Like almost any real data set, the present one contains
outliers, see Fig. 4, and we apply the algorithm proposed in Sections 2.2, 2.4, and 2.5 with
ten percent of discarded elements. The minimum cluster size was set to d + 1 = 16.

Fig. 5 shows the negative double-logarithmic posterior-density-HDBT-ratio plot of the MDP’s
of 1100 replications for six clusters. The favorite solution at the left end of the almost hor-
izontal support line is encircled. A 2D representation of this partition is shown in Fig. 7.
Its cluster sizes are 145, 111, 111, 105, 61, and 61, its HDBT-ratio is 1/158. One or a few
small clusters that cannot be detected by the full normal model may be hidden in the set of
discarded elements (crosses). Fig. 7 shows that the assumed number of outliers is too small.
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Figure 4: Tiles data: scatter plot of the features Zn and FeyOg3 displaying outliers

The oblong shape of the left lower ellipse points to two distant elements in the upper part of
the figure which are assigned to this cluster but do not fit in it.

The BIC curve for the favorite solutions obtained with three to nine clusters is presented in
Fig. 6. It clearly pleads for six clusters. It turns out that increasing the number of clusters by
one essentially splits one group in the preceding solution.

A Appendix

A.1 Lemma

Let g >2,let 0<po<1/g,leta=(ak;) 1<p<, € N@=1*9 be such that ||a|; = >k Wkj >
1<j<g
0, let > ) ar; > ollal|; for all j € 1..g, and put aj. = >_; ax;. Then

1
Y — D ajar > rolalh. (16)

ag .
k:ap.>0 k 1<j<t<g

Proof. Write the left hand side of (16) as

lals D5 w3 P =alh 30 A Do Acidee

k:ag.>0 H Hl 1<j<t<g ’ k:ag.>0 1<j<t<g

Since # = (ax./||all1)k:q,.>0 is a probability vector and since A = (ag;/ak.)k:a,.>0,; 15 a
stochastic matrix s.th. A > p elementwise, the claim follows from an elementary reasoning.
O



tiles.dat

55 - + + —

-log(HDBT ratio)
SN
T

35

25

19000 19500 20000 20500 21000 21500 22000
-log(posterior density)

Figure 5: Tiles data: negative double-logarithmic HDBT-ratio-posterior-density plot for the
minimum distance partitions of 1100 replications for the heteroscedastic, full normal model
with six clusters and 66 discarded points. The encircled solution in the left lower part is most
promising.

A.2 Lemma

Let h > 0 and let k > 1. Let C = {z1,...,Znh,y1,..., Yk} consist of h original data points and
k replacements. Then the norm of the sample mean of C tends to infinity as ||yi|| — oo and
as y; — y1, 2 <1 < k, remain bounded.

Proof. The sum of C'is Y1 i + ky1 + S ,(y; — y1) from which the lemma follows. O

Figure 6: Tiles data: the BIC curve for the favorite solutions with three to nine clusters
suggested by the posterior-density-HDBT-ratio plots.
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Figure 7: Tiles data: MnO-Y plot of the favorite MDP. The ellipses indicate the 0.8-quantiles
of the clusters and x’s stand for discarded points.
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