
The Definition of
The OPL Access Control Policy Language

Christopher Alm1 and Ruben Wolf2

1 Institute of IT-Security and Security Law, University of Passau
christopher.alm@uni-passau.de

2 Fraunhofer Institute for Secure Information Technology (SIT), Darmstadt
ruben.wolf@sit.fraunhofer.de

Technical Report, Number MIP-0902
Department of Informatics and Mathematics

University of Passau, Germany
February 2009

1

Contents

1 Introduction 3

2 Background and Motivation 5
2.1 Basic Definitions . 5

2.1.1 Policy Model vs. Policy Object . 5
2.1.2 Role-Based Access Control . 5

2.2 The Need for a Policy Language . 6

3 The OPL Policy Model 6

4 Library of Modules: Formal Semantics 8
4.1 Role-Based Access Control . 9
4.2 Role Hierarchy . 15
4.3 Context Constraints . 18
4.4 Basic Separation of Duty . 22
4.5 Chinese Wall and Object-based Separation of Duty 27
4.6 Workflow-Related Constraints . 29

5 Definition of the Policy Representation Format 40
5.1 Naming and Namespace Conventions . 41
5.2 ORKA Policy Object in OPL/XML . 42

6 Library of Modules: XML Syntax 45
6.1 RBAC Core Module in OPL/XML . 45
6.2 Role Hierarchy Module in OPL/XML . 48
6.3 Separation of Duty Module in OPL/XML . 49
6.4 Separation of Duty in Role Hierarchies Module in OPL/XML 53
6.5 Exogenous Context Constraints Module in OPL/XML 54
6.6 Chinese Wall Module in OPL/XML . 58
6.7 Object-based Separation of Duty in OPL/XML 60
6.8 Workflow Core Module in OPL/XML . 61
6.9 Workflow Separation of Duty Module in OPL/XML 63
6.10 Workflow Separation of Duty with Context Constraints Module in OPL/XML . . 65
6.11 Workflow Cardinality Module in OPL/XML . 66
6.12 Workflow Bind of Duty Module in OPL/XML . 67
6.13 Workflow Prerequisite Step Module in OPL/XML 68

7 A Banking Scenario 69
7.1 Policy Class . 70
7.2 Policy Example in OPL/Abstract . 70
7.3 Policy Example in OPL/XML . 73

8 Conclusions 81

2

The Definition of
The OPL Access Control Policy Language1

OPL Version 1.2

Christopher Alm
christopher.alm@uni-passau.de

and
Ruben Wolf

rwolf@sit.fraunhofer.de

Abstract

Existing policy languages suffer from having a limited ability of directly and elegantly
expressing high-level access control principles such as history-based separation of duty [24],
binding of duty [17], context constraints [21], Chinese wall [7], and obligations [19]. Further-
more, it is often difficult to extend a language in order to retrofit these features once required
or it is necessary to make use of complicated and complex language constructs to express a
concept. In particular, the latter may cause human mistakes in the policy administration.

To address this problem, this report introduces a flexible, new policy language. The full
language specification is given including a formal semantics written in Object Z and a formal
syntax defined in XML. OPL can represent a wide range of access control principles directly
by providing dedicated XML tags for each supported principle. It can be easily extended
with further principles if necessary. Since OPL is based on a module concept, it can cope with
the language complexity that usually comes with a growing expressiveness. Altogether OPL
is suitable to be used in an enterprise environment: it combines the required expressiveness
with the simplicity necessary for an appropriate administration. A considerable reference
scenario is included in this report.

1 Introduction

Existing policy languages suffer from having a limited ability of directly and elegantly expressing
high-level access control principles such as history-based separation of duty [24], binding of
duty [17], context constraints [21], Chinese wall [7], and obligations [19]. Furthermore, it is
often difficult to extend a language in order to retrofit these features once required or it is
necessary to make use of complicated and complex language constructs to express a concept. In
particular, the latter may cause human mistakes in the policy administration.

On the one hand, a reason for this problem can be that the underlying policy model is too
focused on specific applications or scenarios as in the case of Ponder [9]. On the other hand,
a reason can be that even though a language provides the necessary expressiveness, it requires
the use of complicated and lengthy low-level language constructs in order to actually achieve
the expressiveness as in the case of XACML [19]. Therefore, such a language makes policy
administration error-prone and cumbersome.

As a solution to this, we present the flexible policy language OPL2 that can represent a wide
range of access control principles in XML directly by providing dedicated language constructs
for each supported principle. It can be easily extended with further principles if necessary. OPL

1This work was supported by the German Ministry of Education and Research (BMBF) as part of the project
ORKA, http://www.orka-projekt.de

2OPL stands for ORKA Policy Language because it has been defined as the policy language for the ORKA
Project [1].

3

is under-pinned by a full formal semantic model specified in Object Z that is also given in this
report. Since OPL is based on a module concept, it can cope with the language complexity
that usually comes with a growing expressiveness. Altogether OPL is suitable to be used in an
enterprise environment: it combines the required expressiveness with the simplicity necessary for
an appropriate administration. Note that being able to express combinations of the mentioned
access control principles in a policy language is necessary in real world scenarios such as in the
financial sector or in the health care sector [1].

Our contributions are:

• We have developed the new policy language OPL which is based on the idea of modularizing
the supported access control principles. Each concept is represented by a dedicated high-
level language construct called policy module and can then be (re)used and combined with
each other in order to create a policy. OPL is an XML application (cf. Sections 5 and 6).

OPL is the policy language of the ORKA organizational control architecture developed in
the ORKA research project [1]. The goal of ORKA is to develop a flexible and extensible
authorization architecture that is able to enforce a wide range of organizational control
principles and access control concepts in an enterprise environment. In ORKA, a rich
tool set for OPL has been developed. This includes an administration tool, three different
enforcement engines, and policy validation tools.

• We have developed a full formal semantic model of OPL (i.e. formal semantics or policy
model), which is designed with a dedicated framework for the definition of access control
models [3]. This framework, in turn, makes use of the systematic approach of formal
object-oriented specification using Object Z [10] (cf. Sections 3 and 4).

An important feature of the policy model is the fact that it clearly separates static policy
data from other parts of the policy model such as dynamic session data, role activation
data, and the policy decision logic.

The policy model is a software model for an OPL policy engine. It is extensible so that
new concepts can be defined and explored rapidly and concisely.

• We demonstrate how we can achieve the expressiveness required by an organization by
using policy modules (cf. Sections 3 and 7).

OPL directly supports advanced access control principles that cannot be expressed by
means of dedicated high-level language constructs in any existing policy language to the
best of our knowledge. Examples of such principles are history-based separation of duty
and binding of duty on the task layer. We have developed a library of policy modules
which is able to express the policies of our ORKA case studies, in particular the one from
Schaad et al. [24] (cf. Sect. 7).

This suite currently supports role hierarchy, separation of duty, context constraints, Chi-
nese wall, object-based separation of duty, and workflow-related constraints including
history-based separation of duty, prerequisites, binding of duty, and cardinality constraints.

• We explain why the modularization concept introduced by OPL is the right tool in order
to cope with the complexity of an highly expressive policy language. The idea is to support
for each application of OPL only what is really required by the organization and thus to
keep the application of the policy language streamlined and focused (cf. Section 3).

• We explain how OPL can be extended in order to add new features to the language (cf.
Section 3).

4

• We briefly demonstrate how to apply formal reasoning in order to provide an in-depth
analysis of the policy modules Thereby we can, for example, prove important security
properties as well as argue about design decisions (cf. Sections 4.1 and 4.6).

This report is organized as follows. Section 2 introduces some basic notions and motivates
the need of a policy language. While Section 3 introduces the idea behind the way we define
the semantics of OPL by means of a policy model, Section 4 introduces the library of currently
available policy modules from the point of view of the semantics. Analogously, Section 5 and 6
introduce the idea behind how we define the syntax of OPL as well as the actual syntax of all
available policy modules. In order to give an illustration of the power of OPL, we have a large
example from the banking domain in Section 7.

2 Background and Motivation

2.1 Basic Definitions

2.1.1 Policy Model vs. Policy Object

An (access control) policy is the set of authorization requirements (i.e. authorizations) that a
group of people agreed upon and thus it shall answer the question of who is allowed to perform
which actions. An (access control) policy object is a document representing the policy. The
policy object is based on a policy model or access control model defining a (formal or informal)
semantic domain for the entities the policy object may consist of and thus giving a semantics
to the policy object. In other words, while the policy model defines the structure and the
properties of a policy and the rules according to which policies are created, a policy object is the
representation of a concrete policy with real data for a concrete scenario. This is very similar to
the distinction between classes and objects in object-oriented programming.

If the policy object is written in a language with a formal syntax (i.e. formal grammar), we
will call this language policy language or policy representation format. Such a format makes the
policy manageable and interpretable by the access decision and enforcement environment. In
particular, it can be used for storing the policy persistently.

An authorization architecture is the design of a set of components and their communication
relationships which are necessary to specify, manage, validate, and enforce an authorization
policy. The access control mechanism or policy engine or policy decision point or authorization
engine is an implementation of the component of an authorization architecture that decides
access requests. Hence, the policy engine implements the policy model. The policy engine is
configured by loading a machine readable version of the policy (i.e. the policy object written in
a policy language) and it can then make decisions based on the policy represented by the policy
object. The policy engine knows how to interpret the policy object because it is implemented
according to the policy model giving the semantics to the policy object.

2.1.2 Role-Based Access Control

Since RBAC plays a central role to OPL, we briefly describe the key aspects of it. For further
information confer to the literature [13, 27, 12].

In RBAC, users and permissions are not directly linked to each other, instead roles add
a level of indirection between them in that users are assigned to roles and roles are assigned,
in turn, to permissions. Roles are assumed to be related to jobs or functions of persons in
organizations and to be associated to a semantics which expresses authority and responsibility.

RBAC is known for its various extensions, sometimes called authorization constraints. In
OPL these authorization constraints are regarded as separated access control concepts and in-
troduced through the mentioned policy modules. Authorization constraints can be regarded as

5

restrictions on the sets, functions, and relations representing the RBAC model. There are many
examples for the practical usage of authorization constraints, in particular for the modeling of
higher-level organizational rules as needed, for example, in hospital or banking applications.
In order to express such organizational rules, various types of authorization constraints have
been identified in the literature such as several types of static and dynamic separation of duty
constraints [20, 8, 15, 25, 2], constraints on delegation [26], cardinality constraints [23], context
constraints [14, 18], and workflow constraints [4].

Finally, it should be noted that RBAC is assumed to be policy neutral in that it can simulate
access control models based on completely different paradigms. Sandhu, for example, has shown
that it is possible to simulate lattice-based access control by using RBAC plus constraints [22].

2.2 The Need for a Policy Language

A policy language is a common vehicle to make the policies that are run by an access control
engine (which in turn is based on some access control model) manageable with regard to admin-
istration and enforcement. Therefore, it is necessary to develop a policy language for an access
control model which is able to represent the policies of the model. There are, for example,
approaches adding such a representation format for policies to an RBAC-based model [16, 6, 5].

The policy model which we use for OPL has already incorporated all necessary data modeling
facilities for the definition of a policy language [3]. This is achieved in such a way that our access
control model clearly separates the static data stored in a policy object from the dynamic data
such as session data and role activations.

For OPL, also the flexibility and extensibility of the underlying policy model is inevitable
because it aims to incorporate access control principles for various application scenarios including
banking and health care. In addition to that, it strives for being open for extensions so that it
can still be used when the requirements and the application environment change.

Note that our approach of developing a policy language is driven by an underlying policy
model (i.e. access control model). There are also more language-driven approaches where the
development of the access control model is driven by the syntax of a policy language [19, 9].

3 The OPL Policy Model

As we explained in Section 2.1.1, the policy model gives the semantics to the policy language. In
this section we introduce the idea behind the policy model and explain how the formal semantics
is established. Since the OPL Policy Model is an instance of the extensible framework for the
specification of complex RBAC-models defined by Alm [3], we only introduce the key aspects
necessary to understand the structure of OPL.

The idea behind the OPL policy model is that it is defined as a set of policy modules. Each
policy module is focusing on a certain access control principle and defines all the functionality
about the access control principle. This includes all aspects of policy management such as
necessary data structures, administrative rules, and the access decision logic.

The policy model is specified by using the Object Z notation, a method which is both object-
oriented and formal. In general, the object-orientation provides us with the means to cope with
complexity, extensibility, flexibility, and feature reuse. Being a formal method, the Object Z
specification leaves no room for ambiguities and it can be subject to formal reasoning.

Extensibility is achieved in such a way that new policy modules may be introduced or existing
ones may be refined. The expressiveness of OPL is only limited by the expressiveness of Object
Z which is based on first-order logic and set theory. Furthermore, the complexity of the policy
model is also reduced, since modularization is one of the key countermeasures against complexity.

Every policy module is introduced by means of a set of Object Z classes (i.e. a classes ending
with the words “Engine”, “Policy”, “Request”, and “Env”). These classes are associated to

6

RBACCore

ExoContext

SepDuty

RoleHierarchy

SepDutyRH

WFCore

WFSepDuty

WFCardinality

WFBindDuty

WFPrereqStep

WFSepDutyCC
ChineseWall

RBACStandard

ObjSepDuty

Figure 1: Dependency Hierarchy for Modules (Class Inheritance in UML)

each other as illustrated by Figure 2. The “Engine” class specifies an access control concept
(such as separation of duty) including its access decision evaluation logic, its dynamic data
structures such as session data, and its interface to the system raising access requests such as
the CheckAccess function. Policy modules may depend on each other in such a way that a
module can add or change some functionality to another one while leaving the rest as it is.
The dependences between the modules is realized through class inheritance. Figure 1 shows the
current class hierarchy in UML.

The purpose of the “Policy” classes classes is to provide the data structures for the policy
language (including administrative rules, administrative functions and consistency rules). Hence
these policy modules define which information is supposed to be stored within a policy. The
policy modules are arranged in the same class inheritance relation as the policy modules so that
we actually have the inheritance tree of Figure 1 twice.

The “Request” classes specify the format for of the requests for each module. The “Env”
classes specify the information provided through the environment to the policy engine such as
context information and data from the workflow management system.

Finally, a policy object can be created by simply selecting the required modules and by
filling the data structures with the required data. During the selection of policy modules the
dependencies imposed by Figure 1 has to be taken into account. With regard to the theory (i.e.
the policy model) behind it, this means that the features of all selected Object Z classes are
inherited by using multiple inheritance. Multiple inheritance is a rather unique Object Z feature
that allows us to merge the state spaces and operations of different modules and therefore to
include the functionality they provide. The complexity of policy creation and administration
is reduced since an administrator needs only to focus on the policy modules that he or she
has selected for the current scenario. Thereby it is possible to ignore whole parts of the policy
language and to take into account only the small subset of the language that is relevant for the
current scenario.

7

RBACCoreEngine RBACCorePolicy RBACCoreEnv

RBACCore

WFCoreEngine WFCorePolicyWFCoreEnv

WFCore

Figure 2: Relationship between the classes of a module (in UML)

4 Library of Modules: Formal Semantics

Each module is introduced in a separate subsection. The structure of such a subsection is always
the same. It consists of the following four mandatory parts and one optional part at the end:

1. Formal Definition: in this part the module is defined formally by using Object Z. A
concatenation of all formal definition parts of all modules leads to the full self-contained
formal definition of the whole policy model.

2. Interpretation of basic types: in this part all introduced Object Z basic types are given
an informal semantics. Here the reader is told how the model can be interpreted. The
model gets connected to the real world at this point.

3. Notes on operation invocation: each module states a clear interface it provides to the
environment (i.e. to the applications invoking the operations of the policy engine). The
definition of the interface is done by means of the Object Z visibility list at the beginning
of each module. The “notes on operation invocation” part contains an informal description
on when or under what circumstances the operations of the interface are invoked. The
question for what purpose an operation is invoked is answered by its formal definition.
This part provides additional information on how the model can be interpreted.

4. Informal Summary: this part summarizes the functionality of a module and helps to
understand the formal definition. The main purpose is to give a quick overview of the
module. We recommend to read this paragraph first. We still keep it almost at the end
because it is there only for convenience and does not have any authoritative function.

5. Remarks: the purpose of this optional part is to state remarks such as design decisions
and interesting properties of a module.

The following aspects of an access control model are covered by each policy module:

• Policy Data Structures: the state space of a *Policy class defines which information
of a policy module is supposed to be stored in a policy object. Such a policy object

8

can, for example, be made persistent and load/unload by the policy engine. According to
Strembeck’s categorization of access control data [21], all data structures of a module that
are not part of the policy data structures are part of the so-called endogenous context.

• Administrative rules and functions: the class invariants of a *Policy class define the
administrative constraints that need to be fulfilled at anytime in order to keep the policy
consistent. The operations defined in a *Policy class are the administrative functions that
are supposed to be used for policy administration and management at runtime. This may
include several functions for policy review such as a query function for a data structure.

• Evaluation logics and policy engine operations: the state space of *Engine class
defines the endogenous context of the policy engine including, for example, session data
or role activations. The class invariants define certain consistency properties that need to
be fulfilled at anytime in order to keep the policy engine in a valid state. The operations
defined in a *Engine class are the ones invoked while processing user requests such as access
requests, subject creation requests, and role activation requests. Mainly they operate on
the endogenous context, however, they may also affect policy data.

4.1 Role-Based Access Control

Formal Definition

[USER,ROLE ,SUBJECT ,OBJECT ,OBJECTINSTANCE ,OPERATION]

PERMISSION == OPERATION ×OBJECT

DECISION ::= grant | deny

RBACCoreRequest

s : SUBJECT
op : OPERATION
obi : OBJECTINSTANCE

RBACCoreEnv

OI : P OBJECTINSTANCE
O : P OBJECT
instanceofobj : OI → O

RBACCorePolicy

U : P USER
R : P ROLE
P : P PERMISSION
UA : U ↔ R
PA : R ↔ P

9

AddUser
∆(U)
u? : USER

u? 6∈ U
U ′ = U ∪ {u?}

DeleteUser
∆(U ,UA)
u? : USER

u? ∈ U
U ′ = U \ {u?}
UA′ = UA \ {r : ROLE • u? 7→ r}

AddRole
∆(R)
r? : ROLE

r? 6∈ R
R′ = R ∪ {r?}

DeleteRole
∆(R,UA,PA)
r? : ROLE

r? ∈ R
UA′∼(| {r?} |) = ∅
PA′(| {r?} |) = ∅
R′ = R \ {r?}

AddPermission
∆(P)
p? : PERMISSION

p? 6∈ P
P ′ = P ∪ {p?}

DeletePermission
∆(P ,PA)
p? : PERMISSION

p? ∈ P
PA′∼(| {p?} |) = ∅
P ′ = P \ {p?}

AddUA
∆(UA)
u? : USER
r? : ROLE

u? ∈ U ; r? ∈ R
u? 7→ r? 6∈ UA
UA′ = UA ∪ {u? 7→ r?}

DeleteUA
∆(UA)
u? : USER
r? : ROLE

u? 7→ r? ∈ UA
UA′ = UA \ {u? 7→ r?}

AddPA
∆(PA)
r? : ROLE
p? : PERMISSION

r? ∈ R; p? ∈ P
r? 7→ p? 6∈ PA
PA′ = PA ∪ {r? 7→ p?}

DeletePA
∆(PA)
r? : ROLE
p? : PERMISSION

r? 7→ p? ∈ PA
PA′ = PA \ {r? 7→ p?}

10

RBACCoreEngine

For all modules boolean variables are defined here.
RBACStandardInv : B
RoleHierarchyInv : B

Policy:

Policy : ↓RBACCorePolicy©C
Environment:
Env : ↓RBACCoreEnv©C
Endogeneous Context:

S : P SUBJECT
SR : S ↔ Policy .R
SU : S → Policy .U

ImportPolicy
∆(Policy)
Policy? : ↓RBACCorePolicy

Policy? ∈ ↓RBACCorePolicy
Policy ′ = Policy?

ExportPolicy
Policy ! : ↓RBACStandardPolicy

Policy ! ∈ ↓RBACStandardPolicy
Policy ! = Policy

Grant
d ! : DECISION

d ! = grant

Deny
d ! : DECISION

d ! = deny

Authorization
req? : ↓RBACCoreRequest

RBACStandardPolicy
RBACCorePolicy

11

RBACStandardEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RBACCoreEngine

RBACStandardInv
¬RoleHierarchyInv
Policy ∈ ↓RBACStandardPolicy
∀ s : S • SR(| {s} |) ⊆ Policy .UA(| {SU (s)} |)

ImportPolicy
Policy? ∈ ↓RBACStandardPolicy

ExportPolicy
Policy ! ∈ ↓RBACStandardPolicy

Authorization
∃ r : ROLE ; p : PERMISSION •

(req?.s, r) ∈ SR ∧
(r , p) ∈ Policy .PA ∧
(req?.op,Env .instanceofobj (req?.obi)) = p

CheckAccess =̂ (Grant ∧Authorization) ∨ (Deny ∧ ¬Authorization)
CreateSubject
∆(S ,SR,SU)
s? : SUBJECT
u? : USER
rs? : P ROLE

u? ∈ Policy .U ;
rs? ⊆ Policy .UA(| {u?} |);
s? 6∈ S
S ′ = S ∪ {s?}
SR′ = SR ∪ {r : rs? • s? 7→ r}
SU ′ = SU ∪ {s? 7→ u?}

DestroySubject
∆(S ,SR,SU)
s? : SUBJECT
u? : USER

s? ∈ S ; u? = SU (s?)
S ′ = S \ {s?}
SR′ = SR \ {r : ROLE • s? 7→ r}
SU ′ = SU \ {s? 7→ u?}

ActivateRole
∆(SR)
r? : ROLE
s? : SUBJECT
u? : USER

u? ∈ Policy .U ; s? ∈ S ; r? ∈ Policy .R
u? = SU (s?)
r? ∈ Policy .UA(| {u?} |)
r? 6∈ SR(| {s?} |)
SR′ = SR ∪ {s? 7→ r?}

DeactivateRole
∆(SR)
r? : ROLE
s? : SUBJECT
u? : USER

u? ∈ Policy .U ; s? ∈ S ; r? ∈ Policy .R
u? = SU (s?)
r? ∈ SR(| {s?} |)
SR′ = SR \ {s? 7→ r?}

12

Interpretation of basic types

• Subjects: we interpret the elements of SUBJECT as identifiers to the active entities of
the system such as processes in an operating system.

• Objects/Object-Instances: we interpret the elements of OBJECTINSTANCE as iden-
tifiers to the entities of the system where subjects perform actions on. They are assigned to
a type in OBJECT . Note that in the policy permissions are based on objects rather than
on object-instances. This is because object-instances are considered to be more transient
entities and they are created and deleted outside of the scope of the policy engine. For
example the concrete elements of a file system can be regarded as object instances. Note
that processes (i.e. subjects) might also be made available through the file system to pro-
vide, for example, inter process communication channels. Another example are business
objects such as credit-objects.

• Operations: we interpret the elements of OPERATION as identifiers to the actions that
subjects (request to) perform on objects. In some cases it might be necessary to pass
additional parameters to an operation when it is invoked. Such parameters, however, are
not part of the formal model and it is up the interpretation of this basic type how to handle
them.

• Users: we interpret the elements of USER as identifiers to the digital representation of
human users of the system, as they are provided by, for example, a directory service.

• Roles: we interpret the elements of ROLE as identifiers to the digital representation
of the roles representing the structure of an organization. In contrast to the previously
defined basic types, roles are a concept that is internal to authorization. Hence, the only
occurrence of the just mentioned “digital representation” can be the name of the role as
it is defined in a policy. In distributed or more complex systems, however, roles may be
managed separately. In this case they can be understood in the same way as the other
basic types in this paragraph.

Notes on Operation Invocation

• ImportPolicy and ExportPolicy appear in all modules. They are called by a PAP in order
to load or unload a policy, respectively.

• Each time a subject requests to perform an operation on an object the operation CheckAccess
is called and answers whether or not to grant this request.

• The further engine operations CreateSubject , DestroySubject , ActivateRole, DeactivateRole
are invoked by the PEP whenever a user creates/destroys a subject or (de)activates a role
for a subject.

Informal Summary The basic functionality of role-based access control has already been
defined through two separate modules. While RBACCore introduces only data structures and
heads of operations that are shared with all existing modules, RBACStandard defines the neces-
sary constraints for RBAC. In particular, RBACCore is the root element of our module hierarchy.

The state space of RBACCore can be visualized by the following figure. This figure further
supports the informal descriptions of this paragraph.

13

U PR

S

UA PA

SU SR

The RBACStandard module is mostly derived from the core model of the ANSI RBAC
standard [27]. The class invariant

∀ s : S • SR(| {s} |) ⊆ UA(| {SU (s)} |)

says that the set of activated roles of a subject needs to be a subset of the set of assigned roles
of the user corresponding to the subject. Hence, a user can only activate a role if he or she is
assigned to it.

Remarks

• The corresponding OPL/XML data structures of this policy module are defined in Sec-
tion 6.1.

• Note that it would have been possible to write CheckAccess by means one single schema.
The reason why we decided not to do so is that this way we are prepared for more elaborate
modules connecting, for example, obligations or logging events with access decisions. These
can be added by simply extending the schema definitions of Grant and Deny .

• One of the design decisions made for RBACCoreEngine is to decide whether to chose

PERMISSION == P(OPERATION ×OBJECT)

or

PERMISSION == OPERATION ×OBJECT

as a definition of a permission. While in the first case a permission is a set of tuples, in the
second case a permission is one tuple. We decided to chose the second variant (in contrast
to the ANSI standard) because the first variant adds an unnecessary complexity to the
model. While in the first place it seemed appropriate to use the first version, particularly
because a workflow task could have been directly mapped to one permission instead of
a group of permissions, it turned out on the one hand that it is not necessary to have
this permission aggregation for this purpose. On the other hand, having a permission
as a set of tuples (i.e. first variant) makes it difficult when it comes to selecting the
“requested permission” (e.g. in order to check for associated context constraints) out of a
object/operation pair given by a request. This is because such a pair can be an element
of more than one permission in this case.

• In the version of role-based access control published in 1992 [11] there was a rule called role
assignment rule stated as follows “a subject can execute a transaction only if the subject
has selected or been assigned to a role”. This rule is redundant as we show here.

14

Proposition 1 For any s : S and (op, ob) : Policy .P within the scope of RBACStandardEngine
such that Authorization[s/s?, op/op?, ob/ob?] it follows that SR(| {s} |) 6= ∅.

Proof: Assume that there exist s : S and (op, ob) : Policy .P such that

Authorization[s/s?, op/op?, ob/ob?]

but SR(| {s} |) = ∅. From Authorization[s/s?, op/op?, ob/ob?] it follows that there exists
r : R such that (s, r) ∈ SR which yields a contradiction. 2

4.2 Role Hierarchy

Formal Definition

PartialOrder [T] == {R : T ↔ T | R∗ = R; R−1 ∩ R = idT}

RoleHierarchyPolicy
RBACCorePolicy

RH : R ↔ R

RH ∗ ∈ {PO : PartialOrder [ROLE]}

AddInheritance
∆(RH)
senior? : R
junior? : R

¬(junior? �RH senior?)
¬(senior? �RH junior?)
RH ′ = RH ∪ {senior? 7→ junior?}

DeleteInheritance
∆(RH)
senior? : R
junior? : R

RH ′ = RH \ {senior? 7→ junior?}

15

RoleHierarchyEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RBACCoreEngine

�RH : PartialOrder [ROLE]

RoleHierarchyInv
¬RBACStandardInv
Policy ∈ ↓RoleHierarchyPolicy
�RH = Policy .RH ∗

∀ s : S • (SR(| {s} |)) ⊆ (�RH (| Policy .UA(| {SU (s)} |) |))

ImportPolicy
Policy? ∈ ↓RoleHierarchyPolicy

ExportPolicy
Policy ! ∈ ↓RoleHierarchyPolicy

Authorization
∃ r , rj : ROLE | r �RH rj ; p : PERMISSION ; •

(req?.s, r) ∈ SR ∧
(rj , p) ∈ Policy .PA ∧
(req?.op,Env .instanceofobj (req?.obi)) = p

CreateSubject
∆(S ,SR,SU)
s? : SUBJECT
u? : USER
rs? : P ROLE

u? ∈ U ; s? 6∈ S
rs? ⊆ (�RH (| Policy .UA(| {u?} |) |))
S ′ = S ∪ {s?}
SR′ = SR ∪ {r : rs? • s? 7→ r}
SU ′ = SU ∪ {s? 7→ u?}

ActivateRole
∆(SR)
r? : ROLE
s? : SUBJECT
u? : USER

u? ∈ U ; s? ∈ S ; r? ∈ Policy .R
u? = SU (s?)
r? ∈ (�RH (| Policy .UA(| {u?} |) |))
r? 6∈ SR(| {s?} |)
SR′ = SR ∪ {s? 7→ r?}

DestroySubject
∆(S ,SR,SU)
s? : SUBJECT
u? : USER

s? ∈ S ; u? = SU (s?)
S ′ = S \ {s?}
SR′ = SR \ {r : ROLE • s? 7→ r}
SU ′ = SU \ {s? 7→ u?}

DeactivateRole
∆(SR)
r? : ROLE
s? : SUBJECT
u? : USER

u? ∈ Policy .U ; s? ∈ S ; r? ∈ Policy .R
u? = SU (s?)
r? ∈ SR(| {s?} |)
SR′ = SR \ {s? 7→ r?}

16

Interpretation of basic types This module does not introduce any new basic types.

Notes on Operation Invocation The same notes apply as in the case of RBACCore and
RBACStandard .

Informal Summary The RoleHierarchy module adds (as the name implies) a hierarchy to
the set of roles. The hierarchy needs to be a partial order. It has mainly two consequences:

1. The class invariant of RoleHierarchyEngine is different to the invariant of RBACStandardEngine
in such a way that in addition to roles directly assigned to a user, a user is now able to
activate roles junior to his/her assigned roles (i.e. downward the hierarchy). The class
invariant

∀ s : S • (SR(| {s} |)) ⊆ (�RH (| UA(| {SU (s)} |) |))

reads as follows. Any subject is only allowed to activate a role that its corresponding user
is either assigned to directly or that is a role that is junior to a role the user is assigned to.

2. The Authorization operation is different to RBACStandard in such a way that now access
is also granted to any permission that is assigned to a junior role of an activated role of a
user.

The last question to answer in this paragraph is why we need two versions of the role
hierarchy—namely RH and �RH . While RH is the role hierarchy as it is represented in the
policy, �RH is only existent at runtime. RH is just an antisymmetric relation because it would
not make sense to ensure transitivity and reflexivity in the policy. Otherwise, for example, each
time a role inheritance is added to the policy, it would be necessary to add all indirect junior-
senior-relationships in order to keep the relation transitive. In contrast, �RH is the transitive
reflexive closure of RH , and it is used when evaluating access decisions and role activations
based on the role hierarchy as a partial order.

Remarks

• The corresponding OPL/XML data structures of this policy module are defined in Sec-
tion 6.2.

• It should be noted that it would have been possible to introduce role hierarchies as a child
module of RBACStandard . In this case the Object Z definition principle “cancellation
and redefinition” needs to be used [10]. This principle makes it possible for a subclass to
cancel some features of its superclass in order to make new definitions with the same name
but a (slightly) different semantics. Cancellation and redefinition is carried out by simply
renaming the features which are supposed to be canceled upon inheritance. E.g.

RBACCoreEngine[oldS/S , · · · , oldCreateSubject/CreateSubject]

This way also the class invariant of RBACCoreEngine gets canceled and a new one can be
introduced for RoleHierarchyEngine. For RoleHierarchyEngine the whole subject concept
of RBACCoreEngine needs to be replaced because the semantics of role activation needs
to be changed (i.e. the class invariant).

17

4.3 Context Constraints

Formal Definition

[ContextFunctionName,CFParamKey ,CFParamValue]

CFParamContext : B

CFParamType ::= String | Date | Time | Int

ContextFunctionParam == CFParamKey × CFParamValue × CFParamType × CFParamContext

ContextConstraint == ContextFunctionName × P ContextFunctionParam

ExoContextEnv
RBACCoreEnv

CFNAME : P ContextFunctionName
MandatoryKeys : CFNAME ↔ CFParamKey
OptionalKeys : CFNAME ↔ CFParamKey

∀ cfname : CFNAME • MandatoryKeys(| {cfname} |) ∩OptionalKeys(| {cfname} |) = ∅

ΦEVAL
cfname? : ContextFunctionName
cfps? : P ContextFunctionParam

The requested context function name must be known to the environment for
context evaluation.
cfname? ∈ CFNAME

Are the given parameter keys correct?

dom cfps? ⊆ MandatoryKeys(| {cfname?} |) ∪OptionalKeys(| {cfname?} |)
MandatoryKeys(| {cfname?} |) ⊆ dom cfps?

It is only specified that context functions have a boolean return value. It is not
specified in which way context functions are evaluated, because this depends on
the set of available context functions.

18

ExoContextPolicy
RBACCorePolicy

CC : P ContextConstraint
PCC : P ↔ CC
PACC : PA ↔ CC
RCC : R ↔ CC

AddCC
∆(CC)
cc? : ContextConstraint

cc? 6∈ CC
CC ′ = CC ∪ {cc?}

DeleteCC
∆(CC)
cc? : ContextConstraint

cc? ∈ CC
PCC∼(| {cc?} |) = ∅
RCC∼(| {cc?} |) = ∅
PACC∼(| {cc?} |) = ∅
CC ′ = CC \ {cc?}

AddPCC
∆(PCC)
p? : PERMISSION
cc? : ContextConstraint

(p?, cc?) 6∈ PCC
p? ∈ P ; cc? ∈ CC
PCC ′ = PCC ∪ {p? 7→ cc?}

DeletePCC
∆(PCC)
p? : PERMISSION
cc? : ContextConstraint

(p?, cc?) ∈ PCC
PCC ′ = PCC \ {p? 7→ cc?}

AddPACC
∆(PACC)
p? : PERMISSION
r? : ROLE
cc? : ContextConstraint

(r?, p?) ∈ PA; cc? ∈ CC
((r?, p?), cc?) 6∈ PACC
PACC ′ = PACC ∪ {(r?, p?) 7→ cc?}

DeletePACC
∆(PACC)
p? : PERMISSION
r? : ROLE
cc? : ContextConstraint

((r?, p?), cc?) ∈ PACC
PACC ′ = PACC \ {(r?, p?) 7→ cc?}

AddRCC
∆(RCC)
r? : ROLE
cc? : ContextConstraint

(r?, cc?) 6∈ RCC
r? ∈ P ; cc? ∈ CC
RCC ′ = RCC ∪ {r? 7→ cc?}

DeleteRCC
∆(RCC)
r? : ROLE
cc? : ContextConstraint

(r?, cc?) ∈ RCC
RCC ′ = RCC \ {r? 7→ cc?}

19

DeletePermission =̂
∀ r? : ROLE ; cc? : ContextConstraint | ((r?, p?), cc?) ∈ PACC • DeletePACC ∧
∀ cc? : ContextConstraint | (p?, cc?) ∈ PCC • DeletePCC

DeletePA =̂
∀ cc? : ContextConstraint | ((r?, p?), cc?) ∈ PACC • DeletePACC

DeleteRole =̂
∀ p? : ROLE ; cc? : ContextConstraint | ((r?, p?), cc?) ∈ PACC • DeletePACC ∧
∀ cc? : ContextConstraint | (r?, cc?) ∈ RCC • DeleteRCC

ExoContextEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RBACCoreEngine

Policy ∈ ↓ExoContextPolicy

ImportPolicy
Policy? ∈ ↓ExoContextPolicy

ExportPolicy
Policy ! ∈ ↓ExoContextPolicy

EvalContextConstraints
ccs? : P ContextConstraint

∧(cfname, cfps) : ccs? • Env .ΦEVAL[cfname/cfname?, cfps/cfps?]

ReturnAuthorizationCC
req? : ↓Request
ccs! : P ContextConstraint

ccs! =
Policy .PCC (| {p : Policy .P | p = (req?.op,Env .instanceofobj (req?.obi))} |) ∪
Policy .PACC (| {(r , p) : Policy .PA | p = (req?.op,Env .instanceofobj (req?.obi));

r ∈ SR(| {req?.s} |)} |) ∪
Policy .RCC (| {(r , p) : Policy .PA | p = (req?.op,Env .instanceofobj (req?.obi));

r ∈ SR(| {req?.s} |) • r} |)

Authorization =̂ ReturnAuthorizationCC o
9 EvalContextConstraints

ReturnActivateRoleCC
s? : SUBJECT
u? : USER
r? : ROLE
ccs! : P ContextConstraint

ccs! = Policy .RCC (| {r?} |)

ActivateRole =̂ ReturnActivateRoleCC o
9 EvalContextConstraints

20

ReturnCreateSubjectCC
s? : SUBJECT
u? : USER
rs? : P ROLE
ccs! : P ContextConstraint

ccs! = Policy .RCC (| rs? |)

CreateSubject =̂ ReturnCreateSubjectCC o
9 EvalContextConstraints

Interpretation of basic types

• Context Function Name: A context function name is an identifier for a boolean operator
which is used by the context evaluator in order to deal with context information represented
through context function parameters. An example for a context function are comparison
functions such as “time-in-between” or “greater-or-equal”.

• Context Function Parameters: A context function parameter represents a context
information. There are two cases depending on the value of CFParamContext .

– If CFParamContext is true, then the value CFParamValue needs to be resolved by
an appropriate context provider before it can be processed by the context function.
E.g. CFParamValue could be something like “current-time” or “current-subject” or
“current-location”.

– If CFParamContext is false, then the value CFParamValue is like a constant that can
directly be processed by the context function.

The content of CFParamType states the data type of the value of CFParamValue. In case
that the value of CFParamValue needs to be resolved first, it refers to the type after the
resolution.

Finally CFParamKey is a helper parameter that makes it possible to use different types
of parameter handling (cf. Section 6.5).

Notes on Operation Invocation This module does not introduce any operations other than
administrative operations.

Informal Summary The ExoContext module is based on the idea that context constraints
can be assigned to permissions, roles, and permission assignments.

• In case of the assignment to permissions, the permissions can only be granted if the
context constraint is satisfied. Therefore, context constraints can be assigned to per-
missions via the PCC relation. In particular, whenever an access decision is made,
the renewed Authorization operation firstly checks which of the constraints apply for
the request (ReturnAuthorizationCC). Secondly, it evaluates all the context constraints
(EvalContextConstraints).

• In case of the assignment to a role, the permissions that a user acquires via this role
are only available if all assigned context constraints are satisfied. Furthermore, it is not
possible to activate a role if its assigned context constraints are not satisfied. Therefore,
context constraints can be assigned to permissions via the RCC relation.

21

• In case of the assignment of a context constraint to a permission assignment, an authoriza-
tion that requires a certain permission assignment cannot be granted if the assigned context
constraint is not satisfied. Therefore, context constraints can be assigned to permissions
via the PACC relation.

Remarks

• The corresponding OPL/XML data structures of this policy module are defined in Sec-
tion 6.5.

• It should be noted that our approach is a superset of Strembeck’s and Neumann’s ap-
proach [21] who only consider the case of assigning context constraints to permissions
(PCC). This is a drawback because, firstly, PACC is useful if a certain permission is
supposed to be restricted only for some roles but not for all roles. Secondly, having the
ability to constrain whole roles (via RCC) is a convenient policy modeling feature that
cannot be expressed in their approach.

• It should be noted that with our approach the GT-RBAC model [18] can be imitated. For
this purpose, we make use of the features realized through the RCC relation.

4.4 Basic Separation of Duty

Formal Definition

SepDutyPolicy
RBACCorePolicy

Static separation of duty:

SSoD : (P ROLE) 7→ N
Static separation of duty for permissions:

SSoDP : (P PERMISSION) 7→ N
Strict static separation of duty:

SSSoD : (P ROLE) 7→ N
Dynamic separation of duty:

DSoD : (P ROLE) 7→ N

∀ u : U ; (rs,n) : SSoD • #(rs ∩UA(| {u} |)) ≤ n
∀ r : R; (ps,n) : SSoDP • #(ps ∩ PA(| {r} |)) ≤ n

Additionally, minimal forbidden subsets (mfrs) of a critical role set do not have
any common permission. I.e. they are (not necessarily pairwise) disjoint.

∀ u : U ; (rs,n) : SSSoD •
#(rs ∩UA(| {u} |)) ≤ n ∧
∩{r : ROLE ; mfrs : P ROLE ; ps : P PERMISSION |

mfrs ⊆ rs; #mfrs = n + 1; r ∈ mfrs; ps = PA(| {r} |) • ps} = ∅
Otherwise the constraints do not have any effect:

∀(rs,n) : SSoD • #(rs) > n
∀(rs,n) : SSSoD • #(rs) > n
∀(ps,n) : SSoDP • #(ps) > n
∀(rs,n) : DSoD • #(rs) > n

22

AddUA
∀(rs,n) : P(P ROLE × N) |

(rs,n) ∈ SSoD ∪ SSSoD •
#(rs ∩UA′(| {u?} |)) ≤ n

AddPA
∀(ps,n) : SSoDP •

#(ps ∩ PA′(| {r?} |)) ≤ n
∀(rs,n) : SSSoD •
∩{r : rs; ps : P PERMISSION |
ps = PA′(| {r} |) • ps} = ∅

AddSSoD
rs? : P ROLE
n? : N

rs? 6∈ domSSoD
#(rs?) > n?
SSoD ′ = SSoD ∪ {rs? 7→ n?}

DeleteSSoD
rs? : P ROLE

rs? ∈ domSSoD
SSoD ′ = SSoD \ {rs? 7→ SSoD(rs?)}

AddSSoDP
ps? : P PERMISSION
n? : N

ps? 6∈ domSSoDP
#(ps?) > n?
SSoDP ′ = SSoDP ∪ {ps? 7→ n?}

DeleteSSoDP
ps? : P PERMISSION

ps? ∈ domSSoDP
SSoDP ′ = SSoDP \ {rs? 7→ SSoDP(rs?)}

AddSSSoD
rs? : P ROLE
n? : N

rs? 6∈ domSSSoD
#(rs?) > n?
SSSoD ′ = SSSoD ∪ {rs? 7→ n?}

DeleteSSSoD
rs? : P ROLE

rs? ∈ domSSSoD
SSSoD ′ = SSSoD \ {rs? 7→ SSSoD(rs?)}

AddDSoD
rs? : P ROLE
n? : N

rs? 6∈ domDSoD
#(rs?) > n?
DSoD ′ = DSoD ∪ {rs? 7→ n?}

DeleteDSoD
rs? : P ROLE

rs? ∈ domDSoD
DSoD ′ = DSoD \ {rs? 7→ DSoD(rs?)}

23

SepDutyEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RBACCoreEngine

Role activation history for a subject:

HistorySR : S ↔ R

Policy ∈ ↓SepDutyPolicy
∀ u : Policy .U ; (rs,n) : Policy .DSoD • #(rs ∩HistorySR(| SU−1(| {u} |) |)) ≤ n
SR ⊆ HistorySR

ImportPolicy
Policy? ∈ ↓SepDutyPolicy

ExportPolicy
Policy ! ∈ ↓SepDutyPolicy

CreateSubject
∆(HistorySR)
s? : SUBJECT
u? : USER
rs? : P ROLE

∀(rs,n) : Policy .DSoD • #(rs ∩History ′SR(| SU−1(| SU (s?) |) |)) ≤ n
History ′SR = HistorySR ∪ {r : rs? • s? 7→ r}

ActivateRole
∆(HistorySR)
r? : ROLE
s? : SUBJECT
u? : USER

∀(rs,n) : Policy .DSoD • #(rs ∩History ′SR(| SU−1(| SU (s?) |) |)) ≤ n
History ′SR = HistorySR ∪ {s? 7→ r?}

DestroySubject
∆(HistorySR)
s? : SUBJECT
u? : USER

History ′SR = HistorySR \ {r : ROLE | r ∈ SR(| {s?} |) • s? 7→ r}

24

SepDutyRHPolicy
RoleHierarchyPolicy

SSoD : (P ROLE) 7→ N
DSoD : (P ROLE) 7→ N

∀ u : U ; (rs,n) : SSoD • #(rs ∩ �RH (| UA(| {u} |) |)) ≤ n

Otherwise the constraints do not have any effect:

∀(rs,n) : SSoD • #(rs) > n
∀(rs,n) : DSoD • #(rs) > n

AddUA
∀(rs,n) : SSoD • #(rs ∩ �RH (| UA′(| {u?} |) |)) ≤ n

AddSSoD
rs? : P ROLE
n? : N

rs? 6∈ domSSoD
#(rs?) > n?
SSoD ′ = SSoD ∪ {rs? 7→ n?}

DeleteSSoD
rs? : P ROLE

rs? ∈ domSSoD
SSoD ′ = SSoD \ {rs? 7→ SSoD(rs?)}

AddDSoD
rs? : P ROLE
n? : N

rs? 6∈ domDSoD
#(rs?) > n?
DSoD ′ = DSoD ∪ {rs? 7→ n?}

DeleteDSoD
rs? : P ROLE

rs? ∈ domDSoD
DSoD ′ = DSoD \ {rs? 7→ DSoD(rs?)}

SepDutyRHEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RoleHierarchyEngine

Policy ∈ ↓SepDutyRHPolicy
∀ u : Policy .U ; (rs,n) : Policy .DSoD • #(rs ∩ �RH (| SR(| SU−1(u) |) |)) ≤ n

ImportPolicy
Policy? ∈ ↓SepDutyRHPolicy

ExportPolicy
Policy ! ∈ ↓SepDutyRHPolicy

CreateSubject
∀(rs,n) : Policy .DSoD •

#(rs ∩ �RH (| SR′(| {s?} |) |) ≤ n

ActivateRole
∀(rs,n) : Policy .DSoD •

#(rs ∩ �RH (| SR′(| {s?} |) |) ≤ n

Interpretation of basic types This module does not introduce any new basic types.

Notes on Operation Invocation This module does not introduce any new operations other
than administrative operations.

25

Informal Summary The constraints introduced by SepDuty has the following informal se-
mantics:

• Static Separation of Duty: The function SSoD assigns a natural number n to a set of
critical roles. The class invariant of SepDutyEngine and the additional constraints posed
on AddUA ensure that at most n critical roles may be assigned to user via UA.

• Static Separation of Duty for Permissions: The function SSoDP assigns a natural
number n to a set of critical permissions. The class invariant of SepDutyEngine and the
additional constraints posed on AddPA ensure that at most n critical permissions may be
assigned to user via PA.

• Strict Static Separation of Duty: The function SSSoD assigns a natural number n
to a set of critical roles. In addition to the constraints posed by the static separation of
duty principles (as described above) it ensures that critical roles are not allowed to have
overlapping permissions.

• Dynamic Separation of Duty: The function DSoD assigns a natural number n to a set
of critical roles. The class invariant of SepDutyEngine and the additional constraints posed
on CreateSubject and ActivateRole ensure that at most n critical roles may be activated
at a time by a user (not even by means of two different subjects). During the life time of
a subject it is not possible to activate critical roles one after another.

In contrast, SepDutyRH supports currently only two variants of separation of duty:

• Static Separation of Duty: The function SSoD assigns a natural number to a set of
critical roles. The class invariant of SepDutyRH and the additional constraints posed on
AddUA ensure that the assigned roles of a user together with their junior roles have only
n members in common with the critical roles.

• Dynamic Separation of Duty: The function DSoD assigns a natural number to a set of
critical roles. The class invariant of SepDutyRH and the additional constraints posed on
ActivateRole and CreateSubject ensure that the active roles of a user together with their
junior roles have only n members in common with the critical roles.

Remarks

• The corresponding OPL/XML data structures of this policy modules are defined in Sec-
tions 6.3 and 6.4.

• The separation of duty properties for this module are partially derived from Gligor et.
al. [15] and from the ANSI Standard [27]. Further variants of separation of duty properties
can be easily added if necessary.

26

4.5 Chinese Wall and Object-based Separation of Duty

Formal Definition

ChineseWallPolicy
RBACCorePolicy

Set of chinese wall partitionings over objects:

CW : P seq P OBJECT

Assignment of objects to users indicating which chinese wall partitions the user
is associated with:
UOCW : U ↔ OBJECT

We have indeed a partitioning:

∀ cw : CW • ∃ os : P OBJECT • cw partitions os

All objects in UOcw are in some partition:

∀ ob : OBJECT | ob ∈ ranUOCW •
∃ cw : CW ; obpt : P OBJECT | 〈obpt〉 in cw • ob ∈ obpt

ChineseWallEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ActivateRole,DeactivateRole)
RBACCoreEngine

Policy ∈ ↓ChineseWallPolicy

ImportPolicy
Policy? ∈ ↓ChineseWallPolicy

ExportPolicy
Policy ! ∈ ↓ChineseWallPolicy

Authorization

If a user is assigned to a certain chinese wall partion, then the requested object
must be in this partition:

∀ cw : Policy .CW ; obpt : P OBJECT | 〈obpt〉 in cw •
Policy .UOCW (| SU (req?.s) |) ∩ pt 6= ∅
⇒ Env .instanceofobj (req?.obi) ∈ obpt

CommitAccess
∆(Policy)
req? : ↓Request

If the given object is in a partition of a certain chinese wall partitioning and this
partition is not yet assigned to the user (i.e. first request), then the object is
assigned to the user in order to remember the partition for future requests.

∀ cw : Policy .CW ; obpt : P OBJECT | 〈obpt〉 in cw •
Policy .UOCW (| SU (req?.s) |) ∩ obpt = ∅
∧(req?.op,Env .instanceofobj (req?.obi)) ∈ obpt
⇒ Policy .UO ′

CW = Policy .UOCW ∪ {SU (req?.s) 7→ Env .instanceofobj (req?.obi)}

27

ObjSepDutyEnv

History which users have accessed which object instance by which operation.

UOOObjSoD : USER ↔ OBJECTINSTANCE ↔ OPERATION

ObjSepDutyPolicy

For these objects the ObjSepDuty property is supposed to be fulfilled.

ObjSoD : P OBJECT

ObjSepDutyEngine
RBACCoreEngine

Authorization
∃ op : OPERATION | (SU (req?.s), req?.obi , op) ∈ Env .UOOObjSoD •

Env .instanceofobj (req?.obi) ∈ Policy .ObjSoD ⇒
req?.op = op

Interpretation of basic types This module does not introduce any new basic types.

Notes on Operation Invocation

• CommitAccess: while CheckAccess only checks whether a request can be granted, Com-
mitAccess is invoked by the PEP in order to inform the policy engine that a certain access
request has actually been performed. Since the PEP is trusted, any access requests can be
committed.

Informal Summary

• Chinese Wall is a partitioning of objects in such a way that once a user accessed an object
that is in some partition, he or she is bound to that partition. I.e. the user cannot access
any objects included in other partitions of the same partitioning but he or she is able to
access object outside of the whole partitioning.

• Informally, object-based separation of duty means that for all objects (i.e. object types)
T in ObjSoD the following shall be true. If a user u has accessed an object instance oi
of the type T by means of the operation op, the from that point in time the user is only
allowed to access oi be means of the operation op.

Remarks

• The corresponding OPL/XML data structures of this policy modules are defined in Sec-
tions 6.6 and 6.7.

• Special about the Chinese Wall module is that it contains policy changing engine opera-
tions. Hence, a granted request may entail a policy change.

28

4.6 Workflow-Related Constraints

Formal Definition

[WFTEMPLATE ,WFINSTANCE ,TASK ,TASKINSTANCE]

WFCoreRequest
RBACCoreRequest

ti : TASKINSTANCE

WFCoreEnv

wftemplates : P WFTEMPLATE
tasks : P TASK
wfinstances : P WFINSTANCE
taskinstances : P TASKINSTANCE
instanceofwf : wfinstances → wftemplates
instanceoftask : taskinstances → tasks
belongstoinst : taskinstances → wfinstances
belongstotmpl : tasks → wftemplates
HistoryWFI : seq(WFINSTANCE ×USER × TASK)

instanceofwf ◦ belongstoinst = belongstotmpl ◦ instanceoftask
∀(wfi , u, t) : WFINSTANCE ×USER × TASK | 〈(wfi , u, t)〉 inHistoryWFI •

belongstotmpl (t) = instanceofwf (wfi)

29

WFCorePolicy
RBACCorePolicy

TPA : TASK ↔ P
TRA : TASK ↔ R

The synchronization problem:

domTPA ⊆ Env .tasks
domTRA ⊆ Env .tasks

Every role needs the rights necessary to execute the operations associated with
the task (vertical/horizontal alignment):

∀(t , r) : TRA • TPA(| {t} |) ⊆ PA(| {r} |)

AddTPA
∆(TPA)
task? : TASK
p? : PERMISSION

p? ∈ P ; task? ∈ Env .tasks
(task?, p?) 6∈ TPA
∀ r : ROLE | (task?, r) ∈ TRA •

(r , p?) ∈ PA
TPA′ = TPA ∪ {task? 7→ p?}

DeleteTPA
∆(TPA)
task? : TASK
p? : PERMISSION

(task?, p?) ∈ TPA
TPA′ = TPA \ {task? 7→ p?}

AddTRA
∆(TRA)
task? : TASK
r? : ROLE

r? ∈ R; task? ∈ Env .tasks
(task?, r?) 6∈ TRA
∀ p : PERMISSION | (task?, p) ∈ TPA •

(r?, p) ∈ PA
TRA′ = TRA ∪ {task? 7→ r?}

DeleteTRA
∆(TRA)
task? : TASK
r? : ROLE

(task?, r?) ∈ TRA
TRA′ = TRA \ {task? 7→ r?}

30

WFCoreEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
RBACCoreEngine

claimedby : TASKINSTANCES 7→ S

Policy ∈ ↓WFCorePolicy
dom claimedby ⊆ Env .taskinstances

ImportPolicy
Policy? ∈ ↓WFCorePolicy

ExportPolicy
Policy ! ∈ ↓WFCorePolicy

ClaimTI
∆(claimedby)
s? : SUBJECT
ti? : TASKINSTANCE

claimedby ′ = claimedby ∪ {ti? 7→ s?}
∃ r : ROLE | (s?, r) ∈ SR • (Env .instanceoftask (ti?), r) ∈ Policy .TRA

ReleaseTI
s? : SUBJECT
ti? : TASKINSTANCE

claimedby ′ = claimedby \ {ti? 7→ s?}

Authorization
req? : ↓RBACCoreRequest

req? ∈ WFCoreRequest
req?.ti claimedby req?.s
(req?.op, req?.ob) ∈ Policy .TPA(| {Env .instanceoftask (req?.ti)} |)

31

WFSepDutyPolicy
WFCorePolicy

History-based Dynamic Separation of Duty (Syncless):

HDSoDSL : P WFTEMPLATE

History-based Dynamic Separation of Duty (Simple):

HDSoD : (P TASK) 7→ N
History-based Dynamic Separation of Duty (Task Partions):

HDSoDTP : P seq P TASK

All tasks in a critical task set must belong to exactly one workflow template.
Futhermore, the number of tasks in a critical task set must exceed the number
of allowed task claims from this set:
∀(ts,n) : HDSoD • #(Env .belongstotmpl (| ts |)) = 1 ∧#(ts) > n

All task partions partion a task set that belongs to one workflow template:

∀ tp : HDSoDTP • ∃ ts : P TASK •
tp partitions ts ∧#(Env .belongstotmpl (| ts |)) = 1

32

WFSepDutyEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
WFCoreEngine

Policy ∈ ↓WFSepDutyPolicy

ImportPolicy
Policy? ∈ ↓WFSepDutyPolicy

ExportPolicy
Policy ! ∈ ↓WFSepDutyPolicy

ClaimTI
s? : SUBJECT
ti? : TASKINSTANCE

Env .belongstotmpl ◦ Env .instanceoftask (ti?) ∈ Policy .HDSoDSL ⇒
∃ t : TASK •
¬(〈(Env .belongstoinst(ti?),SU (s?), t)〉 inEnv .HistoryWFI) ∧
t 6= Env .instanceoftask (ti?) ∧
Env .belongstotmpl (t) = Env .belongstotmpl ◦ Env .instanceoftask (ti?)

∀(ts,n) : Policy .HDSoD | Env .instanceoftask (ti?) ∈ ts •
#{t : TASK |

t ∈ ts;
t 6= Env .instanceoftask (ti?);
〈(Env .belongstoinst(ti?),SU (s?), t)〉 inEnv .HistoryWFI

} < n

If there exists a task in the history that is included in a task set which is part
of any critical task partition, then the requested task must also be included in
this task set.
∀ tp : Policy .HDSoDTP ; ts : P TASK | 〈ts〉 in tp • ∃ t : TASK •

t ∈ ts ∧ 〈(Env .belongstoinst(ti?),SU (s?), t)〉 inEnv .HistoryWFI ⇒
Env .instanceoftask (ti?) ∈ ts

WFSepDutyCCPolicy
WFCorePolicy
ExoContextPolicy

HDSoDTPCC : P(seq P TASK × CC)

All task partions partion a task set that belongs to one workflow template:

∀(tp, cc) : HDSoDTPCC • ∃ ts : P TASK •
tp partitions ts ∧#(Env .belongstotmpl (| ts |)) = 1

33

WFSepDutyCCEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
WFCoreEngine[oldClaimTI /ClaimTI]
ExoContextEngine

Policy ∈ ↓WFSepDutyCCPolicy

ImportPolicy
Policy? ∈ ↓WFSepDutyCCPolicy

ExportPolicy
Policy ! ∈ ↓WFSepDutyCCPolicy

RetHDSoDTPCC
s? : SUBJECT
ti? : TASKINSTANCE
ccs! : P ContextConstraint

A context constraint is selected for evaluation whenever a task is requested that
might be subject to an HDSoD constraint associated to the context constraint:

ccs! = {(tp, cc) : Policy .HDSoDTPCC ; ts : P TASK |
〈ts〉 in tp ∧ Env .instanceoftask (ti?) ∈ ts • cc}

EnforceHDSoDTP
s? : SUBJECT
ti? : TASKINSTANCE

If there exists a task in the history that is included in a task set which is part
of any critical task partition, then the requested task must also be included in
this task set.
∀(tp, cc) : Policy .HDSoDTPCC ; ts : P TASK | 〈ts〉 in tp • ∃ t : TASK •

t ∈ ts ∧ 〈(Env .belongstoinst(ti?),SU (s?), t)〉 inEnv .HistoryWFI ⇒
Env .instanceoftask (ti?) ∈ ts

ClaimTI =̂ oldClaimTI
∧
(RetHDSoDTPCC o

9 EvalContextConstraints) ⇒ EnforceHDSoDTP

WFCardinalityPolicy
WFCorePolicy

Card : TASK 7→ N

34

WFCardinalityEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
WFCoreEngine

Policy : ↓RBACCorePolicy

ImportPolicy
Policy? ∈ ↓WFCardinalityPolicy

ExportPolicy
Policy ! ∈ ↓WFCardinalityPolicy

ClaimTI
s? : SUBJECT
ti? : TASKINSTANCE

∃n : N •
(Env .instanceoftask (ti?) 7→ n) ∈ Policy .Card ⇒
#(

Env .HistoryWFI �
{(Env .belongstoinst(ti?),SU (s?),Env .instanceoftask (ti?))}

) < n

WFBindDutyPolicy
WFCorePolicy

BoD : TASK 7� TASK

WFBindDutyEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
WFCoreEngine

Policy ∈ ↓WFBindDutyPolicy

ImportPolicy
Policy? ∈ ↓WFBindDutyPolicy

ExportPolicy
Policy ! ∈ ↓WFBindDutyPolicy

ClaimTI
s? : SUBJECT
ti? : TASKINSTANCE

∃ t : TASK | (t ,Env .instanceoftask (ti?)) ∈ Policy .BoD •
∃ u : USER; wfi : WFINSTANCE | 〈(wfi , u, t)〉 inEnv .HistoryWFI •

u = SU (s?)

35

WFPrereqStepPolicy
WFCorePolicy

PrereqStep : TASK ↔ TASK

WFPrereqStepEngine
�(ImportPolicy ,ExportPolicy ,CheckAccess,CreateSubject ,DestroySubject ,

ClaimTI ,ReleaseTI ,ActivateRole,DeactivateRole)
WFCoreEngine

Policy? ∈ ↓WFPrereqStepPolicy

ImportPolicy
Policy? ∈ ↓WFPrereqStepPolicy

ExportPolicy
Policy ! ∈ ↓WFPrereqStepPolicy

ClaimTI
s? : SUBJECT
ti? : TASKINSTANCE

∀ t : TASK | (t ,Env .instanceoftask (ti?)) ∈ Policy .PrereqStep • ∃ u : USER •
〈(Env .belongstoinst(ti?), u, t)〉 inEnv .HistoryWFI

Interpretation of Basic Types This class of modules introduces four new basic types:

• Workflow Template: the elements of WFTEMPLATE can be interpreted as identifiers
to the workflow schema definitions (also called process models) of the workflow manage-
ment system (WFMS).

• Workflow Instance: the elements of WFINSTANCE can be interpreted as identifiers
to the actual instances of the workflows run by the WFMS. Thus, they are instances of
the workflow templates of the WFMS. There may be multiple workflow instances of one
workflow template.

• Task: the elements of TASK can be interpreted as identifiers to the steps of a workflow
template.

• Task Instance: the elements of TASKINSTANCE can be interpreted as identifiers to
the actual instances of workflow steps run by the WFMS. They are instances of the tasks.
Again, there may be multiple task instances of one task.

Notes on Operation Invocation This class of modules introduces two new operations in its
Engine section:

• ClaimTI: in order to be able to execute a task instance, a subject needs to claim the
task instance first. This association between the task instances and subjects is necessary
because authorizations can then be put in the context of a workflow instance. Furthermore,
history-based separation of duty and related concepts can be specified.

ClaimTI usually is invoked when a work item is selected from the work-list handler.

36

• ReleaseTI: A task instance is released whenever it is completed or aborted. There is
no need to make a distinction between these two cases, because completed task instances
appear in the history of the WFMS.

Informal Summary In this section we introduce a class of modules related to the topic
workflows, instead of just one module. While the core module WFCore provides the basic
concepts of workflow authorization the additional modules add workflow-related authorization
constraints such as history-based separation of duty.

The following figure illustrates the state space of the core module WFCore and its relationship
to a WFMS.

wftemplateswfinstances

taskinstances tasks

instanceofwf

belongstoinst belongstotmpl

instanceoftask

U PR

S

UA PA

SU SR

claimedby

TPA
TRA

The WFCoreEnv environment consists of the relationships and the states of the task in-
stances, the tasks, the workflow instances, and the workflow templates. These sets are linked
with the authorization engine by means of three relations—namely claimedby , TRA, and TPA.

The claimedby relation contains the association of task instances and subjects which is neces-
sary because access decisions for a subject can then be put in the context of a workflow instance.
Furthermore, principles such as history-based separation of duty work in such a way that a sub-
ject might not be able to “claim” a workflow instance if this violates an history-based separation
of duty constraint.

The relations TRA (task-role-assignment) and TPA (task-permission-assignment), which are
particularly part of the policy, specify the relationship between tasks, roles, and permissions.
Every task is assigned a set of permissions (via TPA) that are necessary in order to carry out this
task. For example, for an “approve contract” task the permissions “read document” and “sign
document” might be necessary. Once a task instance is claimed by a subject, the policy engine
ensures that within the context of a task instance only the permissions associated with the task
are granted (cf. Authorization). Via TRA a task is assigned to a set of roles that are allowed to
claim the task (cf. ClaimTI). The class invariant ∀(t , r) : TRA • TPA(| {t} |) ⊆ PA(| {r} |) of
WFCoreEngine ensures that every role associated with a certain task has as least the privileges
(assigned via PA) necessary to execute the task.

37

The modules WFSepDuty , WFCardinality , WFBindDuty , and WFPrereqStep work in such
a way that they augment ClaimTI with the constraints necessary for the particular workflow
authorization principle:

• WFSepDuty and WFSepDutyCC add history-based separation of duty for workflows in
four different versions:

– HDSoDSL: for all wftempl : WFTemplates in the data structure HDSoDSL the
following shall be true: no user is able to execute all tasks belonging to wftempl
within one workflow instance.

– HDSoD: from a given set of critical tasks a user is only allowed to execute N different
tasks within a workflow instance.

– HDSoDTP: note that HDSoDTP is a set of partitionings. Whenever a user has
executed a task which is included in some partition of such a partitioning, he or she is
bound to this partition in the future with regard to the specific workflow instance. I.e.
the user is not allowed to executed any tasks which are included in other partitions
of the same partitioning. However, the user is still allowed to execute tasks outside
of the whole partitioning.

– HDSoDTPCC: this data structure imposes the same constraint as HDSoDTP with
the following difference. The history-based separation of duty constraint must only
be fulfilled if the assigned context constraint is fulfilled. E.g. if we have an industrial
customer, the workflow must be executed according to the mentioned history-based
separation of duty property.

by checking if for a workflow instance there is still another task instance left once the
requested task instance is claimed.

• With WFCardinality it is possible to confine the number of task instances for a certain
task in a workflow instance: in such a case, a task instance can only be claimed if the
history does not already contain a certain number of entries for this task in the context of
a certain workflow instance.

• By means of WFBindDuty the policy engine can force a certain user to be responsible for
a certain task if he or she has completed a certain other task: only this user is then allowed
to claim the task with the binding duty. This can be seen as a certain form of obligation
in a workflow sense.

• Finally, with WFPrereqStep a constraint can be placed in such a way that a certain task
can only be claimed if a certain other task has already be completed by some user.

One may think of further modules and it will probably be necessary when modeling real
world authorization requirements. This set of modules serves as a good starting point for such
an application.

Finally, we prove some properties of the workflow modules.

Proposition 2 A subject who claimed a task instance has all permissions necessary to execute
the operations associated (over TPA) with the corresponding task.

Proof: Let s : S and ti : TASKINSTANCE such that ti claimedby s. Let the corresponding
task be task : TASK | task = Env .instanceoftask (ti). We need to show that s has the autho-
rization to perform any permission (op, ob) = p : PERMISSION that is assigned to task , i.e.
(task , p) ∈ TPA. Hence, we need to show

Authorization[s/s?, op/op?, ob/ob?]

38

The only way to claim a task-instance (see ∆-list) is by means of ClaimTI . Therefore, we have

ClaimTI [s/s?, ti/ti?]

from which we can follow that there exists a role r : ROLE that has been activated by s,
i.e. (s, r) ∈ SR, and that is assigned to task , i.e. (task , r) ∈ TRA. The class invariant of
WFCoreEngine ensures that for every such assignment (task , r) ∈ TRA it holds that if (task , p) ∈
TPA then (r , p) ∈ PA. Hence, we have (s, r) ∈ SR and (r , p) ∈ PA which concludes the proof.
2

Finally, we argue about the following design decision formally:

∀(t , r) : TRA • TPA(| {t} |) ⊆ PA(| {r} |)

instead of

∀(t , r) : TRA • TPA(| {t} |) = PA(| {r} |)

because of the following undesirable consequence:

Proposition 3 If

∀(t , r) : TRA • TPA(| {t} |) = PA(| {r} |)

then one role : ROLE cannot be assigned to two tasks t1, t2 : TASK with different assigned
permissions (over TPA).

Proof: Let p : PERMISSION be w.l.o.g. such that (t1, p) ∈ TPA but (t2, p) 6∈ TPA. Assume
that (t1, role) ∈ TRA and (t2, role) ∈ TRA. By using (t1, p) ∈ TPA and (t1, role) ∈ TRA as well
as the proposed formula we get

p ∈ PA(| {role} |)

By using (t2, role) ∈ TRA together with the proposed formula we get

PA(| {role} |) = TPA(| {t2} |)

Hence, p ∈ TPA(| {t2} |), i.e. (t2, p) ∈ TPA, which yields a contradiction. 2

Remarks

• The corresponding OPL/XML data structures of this policy modules are defined in Sec-
tions 6.8, 6.9, 6.10, 6.11, 6.12, and 6.13.

• Note that instanceofwf , instanceoftask , belongstoinst , and belongstotmpl commute as is spec-
ified by the class invariant of WFCoreEnv .

• Our workflow concept distinguishes between task-level and operation-level. Authorizations
on operation-level include everything that can be handled by the Authorization function.
In contrast, a task may be a set of multiple operations. Authorizations on this level are
handled by the function ClaimTI . For example, workflow-based (history-based) separation
of duty is handled on this level.

39

• In theory it would have been also possible to define the history (in WFCoreEnv) through

History : seq(TASKINSTANCE ×USER)

instead of

History : seq(WFINSTANCE ×USER × TASK)

The reason is that from a task instance one can conclude the associated workflow instance
and the associated task via instanceoftask and belongstoinst , respectively. However, from an
implementation point of view we think the history should be organized as multiple histories
each of which is associated with the appropriate workflow instances. Hence, each workflow
instance carries its own history. Therefore, on the data modeling level, it is reasonable to
organize the data accordingly.

5 Definition of the Policy Representation Format

The concrete syntax for policies is specified in the OPL/XML language. This section intro-
duces the OPL/XML language and explains how to use it in order to compose ORKA policies.
In contrast to the authorization model, the OPL/XML language only defines a subset of the
Object Z definitions (cf. Section 4). For each policy module the OPL/XML specification only
contains the elements of the corresponding Object Z entity class ending with the word “Policy”.
These entities define which part of the policy need to be made persistent within the OPL/XML
policy specification. Persistent policy descriptions may be used, e.g to reinitialize an authoriza-
tion platform with a given policy, transfer a policy to another system or backup and restore
policy snapshots. The OPL/XML specification does not contain any endogenous or exogenous
context definition itself3. However, context information may be referenced by means of external
identifiers (see below), e.g., in order to compose constraints.

Some of the OPL/XML policy modules below may not be used isolated, since they make use
of definitions from other modules within the same policy class (e.g. the role hierarchy model
does not introduce new roles but only relations between existing roles, that have to be defined
in an RBAC core module). The dependencies between the various modules have been outlined
in Figure 1. There are policy modules that do not add any data to the policy specification, e.g.
the RBACStandard module. In order to use such modules they need to be defined as active
modules (cf. Section 5.2.

The authorization model constitutes a particular PDP being responsible for all policy de-
cisions with respect to a single policy object. From that we derived the design principle, that
policy objects must be equipped with all the necessary policy information in order to make the
associated policy decisions. However, this also implies that different policy objects cannot share
policy module instances (i.e. the hierarchical RBAC module of policy object A cannot reuse the
role definitions of the RBAC core module of policy object B).

The design of OPL/XML is based on the following assumptions. First of all, we separate
syntax from semantic. The OPL/XML definitions within this chapter specify the syntax of the
policy, while the semantic has already been specified in Section 4. An ORKA policy object is
one single XML file containing all the necessary module definitions. The DTD (document type
definition) for the policy object constitutes the syntax of the policy, not the semantic. The
overall syntax definition has been separated into several hierarchically structured DTD files, one
DTD file per policy module and one DTD for the policy object, where the latter one inherits all
modules’ DTDs.

3With two exceptions in the Chinese Wall and Object-based Separation of Duty module, see Section 6.6.

40

Since the DTD specification language is somehow limited, there may be policy specifications
that conform to the DTD but constitute invalid policies with respect to the authorization model.
That means the DTD definitions provide a framework for definition of syntactically correct
policies that not necessarily need to be reasonable policies with respect to the authorization
model. Additionally, the DTD for policy object does not restrict the combination of policy
modules within, however not all module combinations are meaningful.

The XML language allows to specify unique identifiers and references to those identifiers.
Though, we have decided not to make use of them for the following reason. Since all policy mod-
ules are within the same policy object’s XML file, the specifications of users, roles, permissions
and all other identifiers would have to be unique not only within a policy module but within the
whole policy object when using that feature. This would have been to restrictive.

Below we differentiate between internal and external identifiers. The scope of internal iden-
tifiers is the authorization model, i.e. they are assigned in order to be references within the
policy specification (e.g. user or permission identifier). External identifiers are used to reference
external resources such as operations or objects.

5.1 Naming and Namespace Conventions

The XML language is string-based and not typed. Therefore and for the sake of consistency we
propose to keep with the following naming and namespace conventions.

In general, even if XML supports UTF-8 encoding, the OPL/XML filenames and specifica-
tions should only use the characters of the 7-bit ASCII charset.

Filenames

All examples and fragments of policy modules within this manual start with the prefix “module”
and end with “policy-fragment” followed by the suffix “.xml”. The corresponding OPL/XML
DTD files start with the prefix “module” and end with “policy” followed by the suffix “.dtd”.

To name filenames the minus symbol is used as a separator for composite names, while to
name the elements and attributes of the XML files and the corresponding DTD specifications
the underscore symbol is used.

Examples:

• module-exo-context-policy.dtd

• module-role-hierarchy-policy-fragment.xml

• policy-object.dtd

• policy-object-domain-a.xml

Element Names

All OPL/XML element names use lower case letters. Composite names use the underscore
symbol “ ” as a separator.

Examples:

• users, user, roles, role

• permission assignment

• policy object modules

41

External and Internal Identifiers

Since XML does not support typed element values, we use prefixes in order to specify the type of
the particular internal identifier. This is intended to facilitate the readability of the OPL/XML
statement. When possible, external identifiers should use the same naming scheme.

Examples:

• User “user:jochen mueller”

• Permission “permission:read some file”

• Context constraint “cc:ssl status on”

The following sections introduce the OPL/XML syntax description for all the modules of
the authorization model (cf. Section 4). We will explain, which parts of the particular module
specification have to be specified within the OPL/XML representation of the policy an which
not. Within each subsection we outline the syntax by means of a figure containing the main
elements of the module or policy object. After that, we present an example fragment of the
particular OPL/XML specification (displayed with a yellow background) and the corresponding
DTD (displayed with a cyan background).

5.2 ORKA Policy Object in OPL/XML

The policy object in OPL/XML is the container for all policy rules of a particular application
domain. There may be different policy objects for the various application domains. Each policy
object is specified within a single OPL/XML file. Each policy object needs to contain all policy
rules in order to make an access decision for the respective policy domain (i.e. a policy decision
point cannot bring the policy rules of different policy domains together). An OPL/XML file
cannot reference the internal identifiers specified within another OPL/XML file.

Figure 3: Outline of a Policy Object

Figure 3 outlines the main structure of the policy object in OPL/XML. The particular
module definitions are omitted for the sake of simplicity. See Section 7.3 for a full policy object
example. Some further aspects are pointed out below.

• The element <policy object> includes a generic list of attributes, active policy modules
and the actual policy modules.

42

• The element <policy object attributes> provides a generic attribute list for policy
object related attributes, such as the name, the version, the description, or the creator of
the policy object.

• The element <active modules>, which specifies the active policy modules that are used
within the policy object, is necessary besides the subsequent <policy object modules>
element. Policy modules may be used even if they do not any persistent data to the policy.
For example, the module RBACStandard is used for non-hierarchical role-based policies.
However, the RBACStandard module itself does not add any policy data within the XML.
All necessary data has to be stored using the RBACCore module. Nevertheless, it needs
to be configured that the RBACStandard module is part of the policy object. That’s why
we need the list of active modules. Additionally, think of a second module without any
additional policy data, e.g. RBACStandard2. If we would not specify which modules are
active, we could not decide whether to use RBACStandard or RBACStandard 2 (or none
of both).

• The element <policy object modules> is a container element for the particular policy
module specifications. There must be at least one policy module within a policy object.

The following XML listing is an example for a policy object in OPL/XML. However, the
specification of the policy object’s modules is omitted here.

Listing 1: OPL/XML: Example Policy Object Fragment� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!DOCTYPE policy_object SYSTEM ” po l i c y−ob j e c t . dtd ”>

3 <policy_object >

4

5 <policy_object_attributes >

6 <attribute key=”name” value=”po:domain−a”/>

7 <attribute key=” v e r s i o n ” value=” 1 .2 ”/>

8 <attribute key=” date ” value=”2008−03−05”/>

9 <attribute key=” d e s c r i p t i o n ” value=”XML syn tax o f a p o l i c y o b j e c t ”/>

10 <attribute key=” c r e a t o r ” value=” use r : admin−abc”/>

11 <attribute key=”domain” value=” domain:a ”/>

12 </policy_object_attributes >

13

14 <active_modules >

15 <active_module name=” modu l e r b a c c o r e p o l i c y ” />

16 <active_module name=” m o d u l e r o l e h i e r a r c h y p o l i c y ” />

17 </active_modules >

18

19 <policy_object_modules >

20 <module_rbac_core_policy >

21 <!-- The particular module specification -->

22 </module_rbac_core_policy >

23

24 <module_role_hierarchy_policy >

25 <!-- The particular module specification -->

26 </module_role_hierarchy_policy >

27

28 </policy_object_modules >

29

30 </policy_object >
 	
43

The DTD policy-object.dtd specifies the syntax of the ORKA policy object. It inherits all
the modules’ DTD specifications, that will be detailed in the subsequent sections. By importing
those DTDs the corresponding element and attribute definitions are available in the DTD of the
policy object.

Listing 2: OPL/XML: policy-object.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!-- policy_object -->

3 <!ELEMENT policy_object (policy_object_attributes , active_modules ,

policy_object_modules)>

4

5 <!-- generic policy object attribute list -->

6 <!ELEMENT policy_object_attributes (attribute *)>

7 <!ELEMENT attribute EMPTY >

8 <!ATTLIST attribute

9 key CDATA #REQUIRED

10 value CDATA #REQUIRED

11 >

12

13 <!-- list of active modules -->

14 <!ELEMENT active_modules (active_module *)>

15 <!ELEMENT active_module EMPTY >

16 <!ATTLIST active_module

17 name CDATA #REQUIRED

18 >

19

20 <!-- policy object modules -->

21 <!ELEMENT policy_object_modules (module_rbac_core_policy |

22 module_role_hierarchy_policy |

23 module_sep_duty_policy |

24 module_sep_duty_rh_policy |

25 module_exo_context_policy |

26 module_chinese_wall_policy |

27 module_obj_sep_duty_policy |

28 module_wf_core_policy |

29 module_wf_sep_duty_policy |

30 module_wf_sep_duty_cc_policy|

31 module_wf_cardinality_policy |

32 module_wf_bind_duty_policy |

33 module_wf_prereq_step_policy

34)+>

35

36 <!-- include external dtd for rbac core -->

37 <!ENTITY % module_rbac_core_policy SYSTEM ”module−rbac−core−p o l i c y . dtd ”>

38 %module_rbac_core_policy;

39

40 <!-- include external dtd for role hierarchies -->

41 <!ENTITY % module_role_hierarchy_policy SYSTEM ”module−r o l e−h i e r a r c h y−p o l i c y . dtd ”>

42 %module_role_hierarchy_policy;

43

44 <!-- include the external dtd for non - hierachical separation of duty -->

45 <!ENTITY % module_sep_duty_policy SYSTEM ”module−sep−duty−p o l i c y . dtd ”>

46 %module_sep_duty_policy;

47

48 <!-- include the external dtd for hierachical separation of duty (and

49 reuse the non - hierarchical element definitions) -->

50 <!ENTITY % module_sep_rh_duty_policy SYSTEM ”module−sep−duty−rh−p o l i c y . dtd ”>

44

51 %module_sep_rh_duty_policy;

52

53 <!-- include external dtd for exogenous context constraints -->

54 <!ENTITY % module_exo_context_policy SYSTEM ”module−exo−contex t−p o l i c y . dtd ”>

55 %module_exo_context_policy;

56

57 <!-- include external dtd for chinese wall constraints -->

58 <!ENTITY % module_chinese_wall_policy SYSTEM ”module−ch i n e s e−wa l l−p o l i c y . dtd ”>

59 %module_chinese_wall_policy;

60

61 <!-- include external dtd for object -based separation of duty constraints -->

62 <!ENTITY % module_obj_sep_duty_policy SYSTEM ”module−obj−sep−duty−p o l i c y . dtd ”>

63 %module_obj_sep_duty_policy;

64

65 <!-- include external dtd for workflow core -->

66 <!ENTITY % module_wf_core_policy SYSTEM ”module−wf−core−p o l i c y . dtd ”>

67 %module_wf_core_policy;

68

69 <!-- include external dtd for workflow -based separation of duty constraints -->

70 <!ENTITY % module_wf_sep_duty_policy SYSTEM ”module−wf−sep−duty−p o l i c y . dtd ”>

71 %module_wf_sep_duty_policy;

72

73 <!-- include external dtd for workflow -based separation of duty with

74 context constraints -->

75 <!ENTITY % module_wf_sep_duty_cc_policy SYSTEM ”module−wf−sep−duty−cc−p o l i c y . dtd ”>

76 %module_wf_sep_duty_cc_policy;

77

78 <!-- include external dtd for workflow -based cardinality constraints -->

79 <!ENTITY % module_wf_cardinality_policy SYSTEM ”module−wf−c a r d i n a l i t y −p o l i c y . dtd ”>

80 %module_wf_cardinality_policy;

81

82 <!-- include external dtd for workflow -based bind of duty constraints -->

83 <!ENTITY % module_wf_bind_duty_policy SYSTEM ”module−wf−bind−duty−p o l i c y . dtd ”>

84 %module_wf_bind_duty_policy;

85

86 <!-- include external dtd for workflow -based prerequisite step constraints -->

87 <!ENTITY % module_wf_prereq_step_policy SYSTEM ”module−wf−pre req−s tep−p o l i c y . dtd ”>

88 %module_wf_prereq_step_policy;
 	

6 Library of Modules: XML Syntax

6.1 RBAC Core Module in OPL/XML

The OPL/XML specifications within this section correspond to the Object Z definitions in
Section 4.1. This section defines all the sets and relations of the policy module RBACCorePolicy,
i.e. the users, the roles, the permissions, the user assignments, and the permission assignments.
Figure 4 outlines the structure of this module.

45

Figure 4: Outline of RBAC Core Module

All users, roles, and permissions are labeled by identifiers. The users are identified by an
external identifier, that may be, for example, a distinguished name in an LDAP repository or a
login name for a web server. Roles and permissions have an internal authorization model based
identifier. This identifier is used in subsequent definitions of the policy, such as role hierarchies.
Roles may have an additional description. Permissions consist of an operation (specified by an
external operation identifier) and an object (also specified by an external object identifier).

Listing 3: OPL/XML: Example RBAC Core Module Fragment� �
1 <module_rbac_core_policy >

2 <users >

3 <!-- The element users (plural)as a container for all users is mandatory ,

4 however , the number of user elements (singular) within may

5 be 0 to n. -->

6 <user user_id=” u s e r : k l a u s m e i e r ”/>

7 <user user_id=” u s e r : j o c h e n s c hm i d t ”/>

8 </users >

9 <roles >

10 <!-- The element roles (plural) as a container for all roles is mandatory ,

11 however , the number of role elements (singular) within may

12 be 0 to n. -->

13 <role role_id=” r o l e : emp l o y e e ” role_description=”Employees ”/>

14 <role role_id=” r o l e :manag e r ” role_description=”Managers ”/>

15 </roles >

16 <permissions >

17 <!-- The element permissions (plural) as a container for all permissions

18 is mandatory , however , the number of permissions elements (singular)

19 within may be 0 to n. Operations and object elements are mandatory

20 any permission -->

21 <permission permission_id=” p e r m i s s i o n : r e a d s o m e f i l e ”>

22 <operation operation_id=” read ”/>

23 <object object_id=”C:\SomeFi le . t x t ”/>

24 </permission >

46

25 <permission permission_id=” p e r m i s s i o n : r e a d c o n f i d e n t i a l f i l e ”>

26 <operation operation_id=” read ”/>

27 <object object_id=”C:\ S t r a t e g y \ S e c r e t s . t x t ”/>

28 </permission >

29 </permissions >

30 <user_assignments >

31 <!-- The element user_assigments (plural) as a container for all user

32 assignments is mandatory , however , the number of user_assignment

33 elements (singular) within may be 0 to n. -->

34 <user_assignment user_id=” u s e r : j o c h e n s c hm i d t ” role_id=” r o l e : emp l o y e e ”/>

35 <user_assignment user_id=” u s e r : j o c h e n s c hm i d t ” role_id=” r o l e :manag e r ”/>

36 <user_assignment user_id=” u s e r : k l a u s m e i e r ” role_id=” r o l e : emp l o y e e ”/>

37 </user_assignments >

38 <permission_assignments >

39 <!-- The element permissions_assignments (plural) as a container for all

40 permission assignments is mandatory , however , the number of

41 permission_assignment elements (singular) within may be 0 to n. -->

42 <permission_assignment permission_id=” p e r m i s s i o n : r e a d s o m e f i l e ”

43 role_id=” r o l e : emp l o y e e ”/>

44 <permission_assignment permission_id=” p e r m i s s i o n : r e a d c o n f i d e n t i a l f i l e ”

45 role_id=” r o l e :manag e r ”/>

46 </permission_assignments >

47 </module_rbac_core_policy >
 	
The DTD module-rbac-core-policy.dtd below defines the syntax of the RBAC core module.
There is one aspect that holds for nearly all cases in that a multitude of similar elements are
defined one after each other. Here, we usually have a container element which is named after the
name of the elements to hold using the plural form (e.g. we have a required element <users>
which contains zero or more elements <user>).

Listing 4: OPL/XML: DTD for RBAC Core Module� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_rbac_core_policy (users , roles , permissions , user_assignments ,

permission_assignments)>

3 <!-- Users -->

4 <!ELEMENT users (user)*>

5 <!ELEMENT user EMPTY >

6 <!ATTLIST user

7 user_id CDATA #REQUIRED

8 >

9 <!-- Roles -->

10 <!ELEMENT roles (role)*>

11 <!ELEMENT role EMPTY >

12 <!ATTLIST role

13 role_id CDATA #REQUIRED

14 role_description CDATA #IMPLIED

15 >

16 <!-- Permissions -->

17 <!ELEMENT permissions (permission)*>

18 <!ELEMENT permission (operation , object)>

19 <!ATTLIST permission

20 permission_id CDATA #REQUIRED

21 >

22 <!ELEMENT operation EMPTY >

47

23 <!ATTLIST operation

24 operation_id CDATA #REQUIRED

25 >

26 <!ELEMENT object EMPTY >

27 <!ATTLIST object

28 object_id CDATA #REQUIRED

29 >

30 <!-- User Assignments -->

31 <!ELEMENT user_assignments (user_assignment)*>

32 <!ELEMENT user_assignment EMPTY >

33 <!ATTLIST user_assignment

34 role_id CDATA #REQUIRED

35 user_id CDATA #REQUIRED

36 >

37 <!-- Permission Assignments -->

38 <!ELEMENT permission_assignments (permission_assignment)*>

39 <!ELEMENT permission_assignment EMPTY >

40 <!ATTLIST permission_assignment

41 permission_id CDATA #REQUIRED

42 role_id CDATA #REQUIRED

43 >
 	
Please note that there is no XML specification for the module RBACStandard since it does

not have any data to be stored persistently. However, if the module RBACStandard is used, it
needs to be configured in the <active modules> element of the policy object (cf. Section 5.2).

6.2 Role Hierarchy Module in OPL/XML

The OPL/XML specifications within this section are derived from the Object Z definitions in
Section 4.2. This section defines all the role-role relations of the policy module RoleHierarchy-
Policy. Figure 5 outlines the structure of this module.

The role hierarchy module cannot be used isolated, since it makes use of the role definitions
of the rbac core modules. I.e. the policy class which uses the role hierarchy module must also
contain an rbac core module.

Figure 5: Outline of Role Hierarchy Module

The role hierarchy is specified as a set of tuples, where each tuple constitutes an edge in
a role hierarchy graph. Each edge is a tuple of two roles, an upper and a lower role, where
the upper role inherits all the permissions of the lower role. The role identifiers have to be
previously defined in an rbac core module. In OPL/XML, the <role hierarchy> contains
<inherit role> elements that represent such edges. Each <inherit role> element has two
mandatory attributes upper role and lower role that hold the internal role identifiers of the
roles to be connected. The semantic of a role hierarchy requires that the role hierarchy is a
partially ordered set, i.e. it is reflexive, antisymmetric, and transitive. In particular, it does not
contains any cycles. The syntax definition must reflect these requirements, of course.

48

Listing 5: OPL/XML: Example Role Hierarchy Module Fragment� �
1 <module_role_hierarchy_policy >

2 <!-- Specifies all edges between roles of the role hierarchy assumes that

3 all roles have been previously defined in the RBACCoreM module -->

4 <role_hierarchy >

5 <!-- The upper_role inherits all permissions from the lower_role -->

6 <inherit_role upper_role=” r o l e : a ” lower_role=” r o l e : b ”/>

7 <inherit_role upper_role=” r o l e : a ” lower_role=” r o l e : c ”/>

8 <inherit_role upper_role=” r o l e : b ” lower_role=” r o l e : d ”/>

9 <inherit_role upper_role=” r o l e : e ” lower_role=” r o l e : f ”/>

10 </role_hierarchy >

11 </module_role_hierarchy_policy >
 	
The DTD module-role-hierarchy-policy.dtd below defines the OPL/XML syntax of the

role hierarchy module.

Listing 6: OPL/XML: module-role-hierarchy-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_role_hierarchy_policy (role_hierarchy)>

3 <!ELEMENT role_hierarchy (inherit_role)*>

4 <!ELEMENT inherit_role EMPTY >

5 <!ATTLIST inherit_role

6 lower_role CDATA #REQUIRED

7 upper_role CDATA #REQUIRED

8 >
 	

6.3 Separation of Duty Module in OPL/XML

The OPL/XML specifications within this section correspond to the Object Z definitions in
Section 4.4. There are two different separation of duty modules in our authorization model, one
for non-hierarchical role-based policy and one for hierarchical role-based policies (see Section 6.4).
This section refers to the formal specifications of SepDutyPolicy, which supports the following
types of separation of duty constraints

1. static separation of duty (SSoD),

2. strict static separation of duty (SSSoD),

3. static separation of duty attached to permissions (SSoDP), and

4. dynamic separation of duty (DSoD).

49

Figure 6: Outline of Separation of Duty Module

All types of separation of duty constraints are specified in the same module, as outlined by
Figure 6. For the types SSoD, SSSoD and DSoD, we have an element <critical role sets>
which holds all the <critical role set> elements of the particular type.

A <critical role set> element contains the element <critical roles> which includes
the critical roles as <critical role> elements. Additionally, the <critical role set> has a
mandatory attribute cardinality which specifies the cardinality of the respective critical role
set.

For the SSoDP constraint, we have

• <critical permission sets> instead of <critical role sets>,

• <critical permission set> instead of <critical role set>,

• <critical permissions> instead of <critical roles>, and

• <critical permission> instead of <critical role>.

50

Listing 7: OPL/XML: Example Separation of Duty Module Fragment� �
1 <module_sep_duty_policy >

2 <static_separation_of_duty >

3 <critical_role_sets >

4 <!-- The element critical_role_sets (plural) as a container for all critical

5 role sets is mandatory , however , the number of critical_role_set

6 elements (singular) within may be 0 to n. -->

7 <critical_role_set cardinality=”1”>

8 <!-- The value of the attribute cardinality must be less than or equal to

9 the number of roles -->

10 <critical_roles >

11 <!-- The number of critical roles may be 1 to n -->

12 <critical_role role_id=” r o l e : b ”/>

13 <critical_role role_id=” r o l e : e ”/>

14 </critical_roles >

15 </critical_role_set >

16 <critical_role_set cardinality=”2”>

17 <!-- The value of the attribute cardinality must be less than or equal to

18 the number of roles -->

19 <critical_roles >

20 <!-- The number of critical roles may be 1 to n -->

21 <critical_role role_id=” r o l e : a ”/>

22 <critical_role role_id=” r o l e : d ”/>

23 <critical_role role_id=” r o l e : e ”/>

24 <critical_role role_id=” r o l e : g ”/>

25 </critical_roles >

26 </critical_role_set >

27 </critical_role_sets >

28 </static_separation_of_duty >

29 <static_separation_of_duty_attached_to_permissions >

30 <critical_permission_sets >

31 <!-- The element critical_permission_sets (plural) as a container for all

32 critical permission sets is mandatory , however , the number of

33 critical_permission_set elements (singular) within may be 0 to n. -->

34 <critical_permission_set cardinality=”2”>

35 <critical_permissions >

36 <critical_permission permission_id=” p e r m i s s i o n : r e a d f o l d e r a ”/>

37 <critical_permission permission_id=” p e r m i s s i o n : r e a d f o l d e r b ”/>

38 <critical_permission permission_id=” p e r m i s s i o n : r e a d f o l d e r c ”/>

39 <critical_permission permission_id=” p e r m i s s i o n : r e a d f o l d e r d ”/>

40 </critical_permissions >

41 </critical_permission_set >

42 </critical_permission_sets >

43 </static_separation_of_duty_attached_to_permissions >

44 <dynamic_separation_of_duty >

45 <critical_role_sets >

46 <!-- The element critical_role_sets (plural) as a container for all critical

47 role sets is mandatory , however , the number of critical_role_set

48 elements (singular) within may be 0 to n. -->

49 <critical_role_set cardinality=”2”>

50 <!-- The value of the attribute cardinality must be less than or equal to

51 the number of roles -->

52 <critical_roles >

53 <!-- The number of critical roles may be 1 to n -->

54 <critical_role role_id=” r o l e : a ”/>

55 <critical_role role_id=” r o l e : b ”/>

56 <critical_role role_id=” r o l e : h ”/>

57 </critical_roles >

58 </critical_role_set >

51

59 </critical_role_sets >

60 </dynamic_separation_of_duty >

61 </module_sep_duty_policy >
 	
The DTD module-sep-duty-policy.dtd below defines the OPL/XML syntax of the non-

hierarchical separation of duty module.

Listing 8: OPL/XML: module-sep-duty-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!-- Non - hierarchical policies may have four different types of separation of

3 duties: static separation of duty (SSoD), strict static separation of duty

4 (SSSoD), static separation of duty attached to permissions (SSoDP), and

5 dynamic separation of duty (DSoD). -->

6 <!ELEMENT module_sep_duty_policy (static_separation_of_duty?,

static_separation_of_duty_attached_to_permissions?,

7 strict_static_separation_of_duty?, dynamic_separation_of_duty ?)>

8

9 <!-- static and dynamic sods -->

10 <!ELEMENT static_separation_of_duty (critical_role_sets)>

11 <!ELEMENT static_separation_of_duty_attached_to_permissions (

critical_permission_sets)>

12 <!ELEMENT strict_static_separation_of_duty (critical_role_sets)>

13 <!ELEMENT dynamic_separation_of_duty (critical_role_sets)>

14

15 <!-- critical role sets and cardinality -->

16 <!ELEMENT critical_role_sets (critical_role_set)*>

17 <!ELEMENT critical_role_set (critical_roles)>

18 <!ATTLIST critical_role_set

19 cardinality CDATA #REQUIRED

20 name CDATA #IMPLIED

21 description CDATA #IMPLIED

22 >

23 <!ELEMENT critical_roles (critical_role)+>

24 <!ELEMENT critical_role EMPTY >

25 <!ATTLIST critical_role

26 role_id CDATA #REQUIRED

27 >

28 <!-- critical permission sets and cardinality -->

29 <!ELEMENT critical_permission_sets (critical_permission_set)*>

30 <!ELEMENT critical_permission_set (critical_permissions)>

31 <!ATTLIST critical_permission_set

32 cardinality CDATA #REQUIRED

33 name CDATA #IMPLIED

34 description CDATA #IMPLIED

35 >

36 <!ELEMENT critical_permissions (critical_permission)+>

37 <!ELEMENT critical_permission EMPTY >

38 <!ATTLIST critical_permission

39 permission_id CDATA #REQUIRED

40 >
 	

52

6.4 Separation of Duty in Role Hierarchies Module in OPL/XML

This section refers to the formal specifications of SepDutyRHPolicy (cf. Section 4.4) for hierar-
chical separation of duty constraints. In contrast to the non-hierarchical variant, only two types
of separation of duty constraints are supported:

1. static separation of duty (SSoD) and

2. dynamic separation of duty (DSoD).

Figure 7: Outline of Hierarchical Separation of Duty Module

Since the syntax of the hierarchical separation of duty constraints modules is almost the
same as the non-hierarchical variant, please refer to Section 6.3 for further information about
the XML elements.

Listing 9: OPL/XML: Example Hierarchical Separation of Duty Fragment� �
1 <module_sep_duty_rh_policy >

2 <static_separation_of_duty >

3 <critical_role_sets >

4 <!-- The element critical_role_sets (plural) as a container for all critical

5 role sets is mandatory , however , the number of critical_role_set

6 elements (singular) within may be 0 to n. -->

7 <critical_role_set cardinality=”1”>

8 <!-- The value of the attribute cardinality must be less than or equal to

9 the number of roles -->

10 <critical_roles >

11 <!-- The number of critical roles may be 1 to n -->

12 <critical_role role_id=” r o l e : a ”/>

13 <critical_role role_id=” r o l e : b ”/>

14 </critical_roles >

53

15 </critical_role_set >

16 </critical_role_sets >

17 </static_separation_of_duty >

18 <dynamic_separation_of_duty >

19 <critical_role_sets >

20 <!-- The element critical_role_sets (plural) as a container for all critical

21 role sets is mandatory , however , the number of critical_role_set

22 elements (singular) within may be 0 to n. -->

23 <critical_role_set cardinality=”2”>

24 <!-- The value of the attribute cardinality must be less than or equal to

25 the number of roles -->

26 <critical_roles >

27 <!-- The number of critical roles may be 1 to n -->

28 <critical_role role_id=” r o l e : c ”/>

29 <critical_role role_id=” r o l e : d ”/>

30 <critical_role role_id=” r o l e : e ”/>

31 <critical_role role_id=” r o l e : f ”/>

32 </critical_roles >

33 </critical_role_set >

34 <critical_role_set cardinality=”1”>

35 <!-- The value of the attribute cardinality must be less than or equal to

36 the number of roles -->

37 <critical_roles >

38 <!-- The number of critical roles may be 1 to n -->

39 <critical_role role_id=” r o l e : a ”/>

40 <critical_role role_id=” r o l e : c ”/>

41 </critical_roles >

42 </critical_role_set >

43 </critical_role_sets >

44 </dynamic_separation_of_duty >

45 </module_sep_duty_rh_policy >
 	
The DTD module-sep-duty-rh-policy.dtd below defines the OPL/XML syntax of the

hierarchical separation of duty module. As you can see, we reuse the document type definitions
from the non-hierarchical variant i.e. we inherit the definitions and make them available in the
hierarchical variant.

Listing 10: OPL/XML: module-sep-duty-rh-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!-- Hierarchical policies may only have the two types of separation of duties:

3 static separation of duty (SSoD), and dynamic separation of duty (DSoD). -->

4 <!ELEMENT module_sep_duty_rh_policy (static_separation_of_duty?,

dynamic_separation_of_duty ?)>
 	

6.5 Exogenous Context Constraints Module in OPL/XML

This sections refers to the formal specification of exogenous context constraints as introduced in
Section 4.3. Context constraints use external context provider to check information the policy
decision is based on. Therefor, each context provider has defined various context functions that
are referenced by its context function IDs. Optionally, context functions may require parameters

54

to be provided by the caller.

Figure 8: Outline of Exogenous Context Constraints Module

The OPL/XML specification of exogenous context constraints consists of two parts. First,
all context constraints are defined and labeled within the element <context constraints>, and
second, the previously defined context constraints are assigned. There are currently three types
of assignments supported: to permissions (<pcc>), to permission assignments (<pacc>) and to
roles (<rcc>). Figure 8 outlines the main elements of the exogenous context module.

Listing 11: OPL/XML: Example Exogenous Context Constraints Fragment� �
1 <module_exo_context_policy >

2 <!-- The module contains of two parts: definition of context constraints and

3 assignment of permission to the previously defined context constraints -->

4

5 <context_constraints >

6 <!-- The element context_constraints (plural) as a container for all

7 context_constraint elements is mandatory , however , the number of

8 context_constraint elements (singular) within may be 0 to n. -->

9 <context_constraint cc_id=” c c : o n o p e n i n g h o u r s o n l y ”>

10 <context_function_id id=” i n b e twe en f o r two t ime s t amp s ” />

11 <context_function_parameters >

12 <!-- a parameter must have a value and may have an optional key -->

13 <parameter key=” t ime ” value=” DateTimeContextProv ide r . c u r r en t−t ime ”

14 type=” t ime ” context=” ye s ” />

15 <parameter key=” beg in ” value=”08 :00 ” type=” t ime ” context=”no” />

16 <parameter key=”end” value=”20 :00 ” type=” t ime ” context=”no” />

55

17 </context_function_parameters >

18 </context_constraint >

19 <context_constraint cc_id=” c c : s s l s t a t u s o n ”>

20 <context_function_id id=” equa l s ” />

21 <context_function_parameters >

22 <parameter key=” l e f t ” value=” Connec t i onCon t e x tP rov i d e r . c h e c k s s l ”

23 type=” s t r i n g ” context=” ye s ” />

24 <parameter key=” r i g h t ” value=” t r u e ” type=” s t r i n g ” context=”no” />

25 </context_function_parameters >

26 </context_constraint >

27 </context_constraints >

28

29 <context_constraint_assignments >

30 <!-- The element context_constraint_assignments is a container

31 for all context constraint assignments . There are currently three

32 types of assignments supported: to permissions (pcc), to permission

33 assignments (pacc) and to roles (rcc). -->

34 <pcc permission_id=” p e r m i s s i o n : w r i t e a c c o u n t i n g e n t r y ”

35 cc_id=” c c : o n o p e n i n g h o u r s o n l y ” />

36 <pcc permission_id=” p e r m i s s i o n : r e a d c o n f i d e n t i a l d a t a ”

37 cc_id=” c c : s s l s t a t u s o n ” />

38 <pacc role_id=” r o l e :manag e r ”

39 permission_id=” p e r m i s s i o n : u p d a t e c o n f i d e n t i a l d a t a ”

40 cc_id=” c c : s s l s t a t u s o n ” />

41 <rcc role_id=” r o l e : c l e r k ”

42 cc_id=” c c : o n op e n i n g h ou r s ” />

43 </context_constraint_assignments >

44

45 </module_exo_context_policy >
 	
With respect to the OPL/XML representation, the following aspects are of interest:

• The mandatory attribute cc id of the element <context constraint> is an internal iden-
tifier and used to assign the context constraint to a permission.

• The mandatory attribute id of the element <context function id> is an external iden-
tifier representing a function that can process context information.

• The element <context function parameters> is optional. It contains a set of elements
<parameter> representing the parameters passed to the context function.

• Each <parameter> element must have an attribute value, an attribute type, and an
attribute context. It may have the optional attribute key.

– Value: A parameter contains in its value attribute either a constant or a reference
to a context information that must be retrieved from a context provider before it can
be processed by the context function. In the latter case the notation is a follows:

contextprovider.function(parameter, ...)

Note that the specification of the appropriate external context provider that is re-
sponsible to resolve a reference to a context information is included in the value
attribute.
In particular, nesting within the value attribute is allowed. For example

wfms.getTasks(parameters.workflowinstance)

56

– Type: Independent from whether the content of the value attribute is a constant or
a reference to external context information, the type attribute is one of the following:
{date|time|int|string}. It specifies the data type of the constant or the data type
of the resolved context information.

– Context: The content of context is either yes or no:

∗ In case of yes, the value of value needs to be resolved by an external context
provider before it can be processed by the context function.

∗ In case of no, the value of value is like a constant that can directly be processed
by the context function.

– Key: By allowing an optional key attribute, we can support different types of pa-
rameter handling:

1. Assignment of parameters to the function in the provided order (such as with
Java method invocations), see Listing 11 lines 21–27 which corresponds to the
function call:
ConnectionContextProvider.check ssl status(on)

2. Assignment of parameter in arbitrary order, where the mapping of parameters is
specified by keys (such as for most of Unix shell commands), see Listing 11 lines
12–20 which corresponds to the function call:
DateTimeContextProvider.time interval function
--begin=08:00 --end=20:00

• Within the element <pcc> an already existing permission (specified by the internal iden-
tifier permission id) is assigned to the internal identifier cc id.

• Within the element <pacc> an already existing permission assignment (specified by the
two internal identifiers permission id and role id) is assigned to the internal identifier
cc id.

• Within the element <rcc> an already existing role (specified by the internal identifier
role id) is assigned to the internal identifier cc id.

The DTD module-exo-context-policy.dtd below defines the OPL/XML syntax of the
exogenous context constraints module.

Listing 12: OPL/XML: module-exo-context-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_exo_context_policy (context_constraints ,

3 context_constraint_assignments)>

4

5 <!-- context constraints -->

6 <!ELEMENT context_constraints (context_constraint)*>

7 <!ELEMENT context_constraint (context_function_id , context_function_parameters *)>

8 <!ATTLIST context_constraint

9 cc_id CDATA #REQUIRED

10 >

11

12 <!ELEMENT context_function_id EMPTY >

13 <!ATTLIST context_function_id

14 id CDATA #REQUIRED

15 >

16 <!ELEMENT context_function_parameters (parameter *)>

57

17 <!ELEMENT parameter EMPTY >

18 <!ATTLIST parameter

19 value CDATA #REQUIRED

20 type (date|time|int|string) #REQUIRED

21 context (yes|no) #REQUIRED

22 key CDATA #IMPLIED

23 >

24

25 <!-- context constraint assigments -->

26 <!ELEMENT context_constraint_assignments (pcc*,pacc*, rcc*)*>

27 <!ELEMENT pcc EMPTY >

28 <!ATTLIST pcc

29 permission_id CDATA #REQUIRED

30 cc_id CDATA #REQUIRED

31 >

32 <!ELEMENT pacc EMPTY >

33 <!ATTLIST pacc

34 role_id CDATA #REQUIRED

35 permission_id CDATA #REQUIRED

36 cc_id CDATA #REQUIRED

37 >

38 <!ELEMENT rcc EMPTY >

39 <!ATTLIST rcc

40 role_id CDATA #REQUIRED

41 cc_id CDATA #REQUIRED

42 >
 	

6.6 Chinese Wall Module in OPL/XML

This sections refers to the formal specification of the Chinese Wall model as introduced in
Section 4.5. The following figure outlines the main elements of the Chinese Wall’s OPL/XML
representation format.

Figure 9: Outline of Chinese Wall Module

58

The module consists of two parts. First, the definition of object partitions. And second, the
set of user object assignments. For the semantics of the particular elements, please refer to the
formal specification in Section 4.5.

Listing 13: OPL/XML: Example Chinese Wall Fragment� �
1 <module_chinese_wall_policy >

2 <!-- This module consists of two parts. First , the definition of object

3 partitions . And second , the set of user -object tuples specifying the history

4 of objects by accessed by the particular users -->

5 <cw_partitions >

6 <cw_partition >

7 <partition_object object_id=” o b j e c t : f i l e s c o m p a n y a ” />

8 <partition_object object_id=” ob j e c t : ema i l s c ompany a ” />

9 </cw_partition >

10 <cw_partition >

11 <partition_object object_id=” o b j e c t : f i l e s c omp a n y b ” />

12 <partition_object object_id=” ob j e c t : ema i l s c ompany b ” />

13 </cw_partition >

14 </cw_partitions >

15

16 <!-- uocws are initially empty and are filled in while users working

17 with the system. -->

18 <uocws >

19 <uocw user_id=” u s e r : m u e l l e r ” object_id=” o b j e c t : f i l e s c o m p a n y a ” />

20 <uocw user_id=” u s e r : s c hm i d t ” object_id=” ob j e c t : ema i l s c ompany b ” />

21 </uocws >

22 </module_chinese_wall_policy >
 	
The DTD module-chinese-wall-policy.dtd below defines the OPL/XML syntax of the

chinese wall module.

Listing 14: OPL/XML: module-chinese-wall-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_chinese_wall_policy (cw_partitions , uocws)>

3

4 <!ELEMENT cw_partitions (cw_partition)*>

5

6 <!ELEMENT cw_partition (partition_object)*>

7

8 <!ELEMENT partition_object EMPTY >

9 <!ATTLIST partition_object

10 object_id CDATA #REQUIRED

11 >

12

13 <!ELEMENT uocws (uocw)*>

14

15 <!ELEMENT uocw EMPTY >

16 <!ATTLIST uocw

17 user_id CDATA #REQUIRED

18 object_id CDATA #REQUIRED

19 >
 	
59

6.7 Object-based Separation of Duty in OPL/XML

This module defines the OPL/XML representation of the ObjSepDuty module as formally spec-
ified in Section 4.5. The main OPL/XML elements of the module are outlined in the figure
below.

Figure 10: Outline of Object-based Separation of Duty Module

The following OPL/XML fragment outlines the use of the representation format.

Listing 15: OPL/XML: Object-based Separation of Duty Fragment� �
1 <module_obj_sep_duty_policy >

2 <!-- Object -based Separation of Duty Constraints -->

3 <objsods >

4 <objsod object_id=” o b j e c t : p r o d u c t b u n d l e ” />

5 <objsod object_id=” o b j e c t : c o n t r a c t a ” />

6 </objsods >

7 </module_obj_sep_duty_policy >
 	
The DTD module-obj-sep-duty-policy.dtd below defines the OPL/XML syntax of the

object-based separation of duty module.

Listing 16: OPL/XML: module-obj-sep-duty-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!-- Object -based Separation of Duty Constraints -->

3 <!ELEMENT module_obj_sep_duty_policy (objsods)>

4 <!ELEMENT objsods (objsod)*>

5 <!ELEMENT objsod EMPTY >

6

7 <!ATTLIST objsod

8 object_id CDATA #REQUIRED

9 >
 	
The subsequent Sections 6.8 to 6.13 cover workflow-related OPL/XML modules. The formal

specification and semantics has been defined in Section 4.6. There are currently five different
workflow-related modules:

1. the workflow core module WFCorePolicy (see Section 6.8),

2. the workflow separation of duty constraints module WFSepDutyPolicy (see Section 6.9),

60

3. the workflow separation of duty constraints with context constraints module WFSepDuty-
CCPolicy (see Section 6.10),

4. the workflow cardinality constraints module WFCardinalityPolicy (see Section 6.11),

5. the workflow bind duty constraints module WFBindDutyPolicy (see Section 6.12), and

6. the workflow prerequisite step constraints module WFPrereqStepPolicy (see Section 6.13).

6.8 Workflow Core Module in OPL/XML

The OPL/XML specifications within this section correspond to the Object Z definitions in Sec-
tion 4.6. The workflow core module builds the basic connection between the authorization system
and the workflow engine. It specifies the set of task-permission assignments, i.e. assignments of
workflow task IDs to permission IDs of the authorization system, and the set of task-role assign-
ments, i.e. assignments of workflow task IDs to role IDs of the authorization system. Figure 11
outlines the main elements of the workflow core module.

Figure 11: Outline of Workflow Core Module

The following aspects should be emphasized:

• The particular workflow management system does not need to be specified as part of the
policy. Instead it is already known to the PDP as part of the environment.

• The element <task permission assignments> contains a set of <task permission
assignment> elements.

• Each <task permission assignment> assigns a task to a permission, both specified within
the attributes task id and permission id by its identifiers.

61

• The element <task role assignments> contains a set of <task role assignment> ele-
ments.

• Each <task role assignment> assigns a task to a role, both specified within the attributes
task id and role id by its identifiers.

Listing 17: OPL/XML: Example Workflow Core Fragment� �
1 <module_wf_core_policy >

2 <task_permission_assignments >

3 <task_permission_assignment task_id=” t a s k : p l a c e c u s t om e r o r d e r ”

4 permission_id=” p e rm i s s i o n : r e a d c u s t ome r r e c o r d ”/>

5 <task_permission_assignment task_id=” t a s k : p l a c e c u s t om e r o r d e r ”

6 permission_id=” p e r m i s s i o n : w r i t e o r d e r t a b l e ”/>

7 <task_permission_assignment task_id=” t a s k : c h e c k c r e d i t w o r t h i n e s s ”

8 permission_id=” p e r m i s s i o n : p r e p a r e r a t i n g r e p o r t ”/>

9 </task_permission_assignments >

10 <task_role_assignments >

11 <task_role_assignment task_id=” t a s k : p l a c e c u s t om e r o r d e r ”

12 role_id=” r o l e : c l e r k ”/>

13 <task_role_assignment task_id=” t a s k : c h e c k c r e d i t w o r t h i n e s s ”

14 role_id=” r o l e :manag e r ”/>

15 </task_role_assignments >

16 </module_wf_core_policy >
 	
The DTD module-wf-core-policy.dtd of the workflow core module is displayed in the

Listing 18 below.

Listing 18: OPL/XML: module-wf-core-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_core_policy (task_permission_assignments ,task_role_assignments)

3 >

4

5 <!ELEMENT task_permission_assignments (task_permission_assignment *)>

6 <!ELEMENT task_permission_assignment EMPTY >

7 <!ATTLIST task_permission_assignment

8 task_id CDATA #REQUIRED

9 permission_id CDATA #REQUIRED

10 >

11

12 <!ELEMENT task_role_assignments (task_role_assignment *)>

13 <!ELEMENT task_role_assignment EMPTY >

14 <!ATTLIST task_role_assignment

15 task_id CDATA #REQUIRED

16 role_id CDATA #REQUIRED

17 >
 	

62

6.9 Workflow Separation of Duty Module in OPL/XML

This section introduces the workflow separation of duty constraints module. It allows to define
three types of history based dynamic separation of duty constraints as formally specified in
Section 4.6:

• HDSoDSL – History-based Dynamic Separation of Duty (Syncless)

• HDSoD – History-based Dynamic Separation of Duty (Simple)

• HDSoDTP – History-based Dynamic Separation of Duty (Task Partitions)

The main elements of this module are outlined in Figure 12.

Figure 12: Outline of Workflow Separation of Duty Module

Within <hdsodsl>, the <critical workflow template> element contains the mutual ex-
cluding <workflow template> elements. Each <workflow template> element has a manda-
tory attribute template id that references external workflow template of the corresponding
workflow management system.

For <hdsod>, the <critical tasks set> elements contain a mandatory attribute cardinality.
The <critical tasks set> element contains a set of <critical task> elements that are used
to reference a task by means of the attribute task id which is an external identifier.

Similar to the Chinese Wall module, <hdsodtp> defines mutual exclusive task partitions.
The following listing illustrates the use of the module.

63

Listing 19: OPL/XML: Example Workflow Separation of Duty Fragment� �
1 <module_wf_sep_duty_policy >

2 <!-- History -based Dynamic Separation of Duty (Syncless) -->

3 <hdsodsl >

4 <critical_workflow_template template_id=” w f t e m p l a t e : l o a n o r i g i n a t i o n ” />

5 <critical_workflow_template template_id=” wf t emp la t e :w indows pe rm change ” />

6 <critical_workflow_template template_id=” w f t emp l a t e : u n i x a d d u s e r ” />

7 <critical_workflow_template template_id=” w f t emp l a t e : un i x p e rm change ” />

8 </hdsodsl >

9

10 <!-- History -based Dynamic Separation of Duty (Simple) -->

11 <hdsod >

12 <critical_tasks_set cardinality=”2”>

13 <critical_task task_id=” t a s k : c u s t ome r i d e n t ”/>

14 <critical_task task_id=” t a s k : c h e c k r a t i n g ”/>

15 <critical_task task_id=” t a s k : o p en a c c oun t ”/>

16 </critical_tasks_set >

17 <critical_tasks_set cardinality=”1”>

18 <critical_task task_id=” t a s k : c h o o s e b ound l e d p r o du c t ”/>

19 <critical_task task_id=” t a s k : p r i c e b o u n d l e d p r o d u c t ”/>

20 </critical_tasks_set >

21 </hdsod >

22

23 <!-- History -based Dynamic Separation of Duty (Task Partitions) -->

24 <hdsodtp >

25 <hdsodtp_partitioning >

26 <hdsodtp_partition >

27 <partition_task task_id=” t a s k : i n p u t c u s t ome r d a t a ”/>

28 <partition_task task_id=” t a s k : c h e c k r a t i n g ”/>

29 <partition_task task_id=” t a s k : b a n k s i g n s f o rm ”/>

30 </hdsodtp_partition >

31 <hdsodtp_partition >

32 <partition_task task_id=” t a s k : p r i n t o p e n i n g f o rm ”/>

33 <partition_task task_id=” t a s k : o p en a c c oun t ”/>

34 </hdsodtp_partition >

35 </hdsodtp_partitioning >

36 </hdsodtp >

37

38 </module_wf_sep_duty_policy >
 	
The DTD module-wf-sep-duty-policy.dtd of the workflow separation of duty OPL/XML

module is shown in Listing 20 below.

Listing 20: OPL/XML: module-wf-sep-duty-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_sep_duty_policy (hdsodsl?, hdsod?, hdsodtp ?)>

3

4 <!-- History -based Dynamic Separation of Duty (Syncless) -->

5 <!ELEMENT hdsodsl (critical_workflow_template *)>

6 <!ELEMENT critical_workflow_template EMPTY >

7 <!ATTLIST critical_workflow_template

8 template_id CDATA #REQUIRED

9 >

10

64

11 <!-- History -based Dynamic Separation of Duty (Simple) -->

12 <!ELEMENT hdsod (critical_tasks_set)*>

13 <!ELEMENT critical_tasks_set (critical_task)+>

14 <!ATTLIST critical_tasks_set

15 cardinality CDATA #REQUIRED

16 name CDATA #IMPLIED

17 description CDATA #IMPLIED

18 >

19 <!ELEMENT critical_task EMPTY >

20 <!ATTLIST critical_task

21 task_id CDATA #REQUIRED

22 >

23

24 <!-- History -based Dynamic Separation of Duty (Task Partitions) -->

25 <!ELEMENT hdsodtp (hdsodtp_partitioning)*>

26 <!ELEMENT hdsodtp_partitioning (hdsodtp_partition)*>

27 <!ATTLIST hdsodtp_partitioning

28 name CDATA #IMPLIED

29 description CDATA #IMPLIED

30 >

31 <!ELEMENT hdsodtp_partition (partition_task)+>

32 <!ATTLIST hdsodtp_partition

33 name CDATA #IMPLIED

34 description CDATA #IMPLIED

35 >

36 <!ELEMENT partition_task EMPTY >

37 <!ATTLIST partition_task

38 task_id CDATA #REQUIRED

39 >
 	

6.10 Workflow Separation of Duty with Context Constraints Module in OPL/XML

This section introduces the OPL/XML representation of the module WFSepDutyCCPolicy as
formally specified in Section 4.6. The main elements of the module are outlined in the figure
below.

Figure 13: Outline of Workflow Separation of Duty with Context Constraints Module

The following listing illustrated the use of the module.

65

Listing 21: OPL/XML: Example Workflow Separation of Duty with Context Constraints Frag-
ment� �

1 <module_wf_sep_duty_cc_policy >

2 <!-- History -based Dynamic Separation of Duty with Task Partitions and

3 Context Constraints -->

4 <hdsodtpcc >

5 <hdsodtpcc_partitioning cc_id=” on op e n i n g h ou r s o n l y ”>

6 <hdsodtpcc_partition >

7 <cc_partition_task task_id=” t a s k : i n p u t c u s t ome r d a t a ”/>

8 <cc_partition_task task_id=” t a s k : c h e c k r a t i n g ”/>

9 <cc_partition_task task_id=” t a s k : b a n k s i g n s f o rm ”/>

10 </hdsodtpcc_partition >

11 <hdsodtpcc_partition >

12 <cc_partition_task task_id=” t a s k : p r i n t o p e n i n g f o rm ”/>

13 <cc_partition_task task_id=” t a s k : o p en a c c oun t ”/>

14 </hdsodtpcc_partition >

15 </hdsodtpcc_partitioning >

16 </hdsodtpcc >

17 </module_wf_sep_duty_cc_policy >
 	
The DTD module-wf-sep-duty-cc-policy.dtd of the workflow separation of duty OPL/XML

module is shown in Listing 22 below.

Listing 22: OPL/XML: module-wf-sep-duty-cc-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_sep_duty_cc_policy (hdsodtpcc)>

3 <!-- History -based Dynamic Separation of Duty (Task Partitions) -->

4 <!ELEMENT hdsodtpcc (hdsodtpcc_partitioning *)>

5

6 <!ELEMENT hdsodtpcc_partitioning (hdsodtpcc_partition)*>

7 <!ATTLIST hdsodtpcc_partitioning

8 cc_id CDATA #REQUIRED

9 name CDATA #IMPLIED

10 description CDATA #IMPLIED

11 >

12 <!ELEMENT hdsodtpcc_partition (cc_partition_task)+>

13 <!ATTLIST hdsodtpcc_partition

14 name CDATA #IMPLIED

15 description CDATA #IMPLIED

16 >

17 <!ELEMENT cc_partition_task EMPTY >

18 <!ATTLIST cc_partition_task

19 task_id CDATA #REQUIRED

20 >
 	

6.11 Workflow Cardinality Module in OPL/XML

This section allows the definition of workflow task cardinality constraints by assigning a cardi-
nality to a workflow task. The OPL/XML specifications within this section correspond to the
Object Z definitions in Section 4.6. The basic structure is outlined in Figure 14 below.

66

Figure 14: Outline of Workflow Cardinality Module

The module contains a set of <task cardinality> elements. Each of them has two manda-
tory attributes task id and cardinality.

Listing 23: OPL/XML: Example Workflow Cardinality Fragment� �
1 <module_wf_cardinality_policy >

2 <task_cardinalities >

3 <task_cardinality task_id=” t a s k : c h e c k c u s t o m e r i d e n t i t y ” cardinality=”2”/>

4 <task_cardinality task_id=” t a s k : s u bm i t o r d e r ” cardinality=”1”/>

5 </task_cardinalities >

6 </module_wf_cardinality_policy >
 	
The DTD module-wf-cardinality-policy.dtd of the workflow cardinality module is shown

in Listing 24.

Listing 24: OPL/XML: module-wf-cardinality-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_cardinality_policy (task_cardinalities)>

3 <!ELEMENT task_cardinalities (task_cardinality *)>

4 <!ELEMENT task_cardinality EMPTY >

5 <!ATTLIST task_cardinality

6 task_id CDATA #REQUIRED

7 cardinality CDATA #REQUIRED

8 >
 	

6.12 Workflow Bind of Duty Module in OPL/XML

This section describes the OPL/XML syntax of the workflow bind of duty constraints module,
which allows to bind a workflow task to another workflow task. The OPL/XML specifications
within this section correspond to the Object Z definitions in Section 4.6. Figure 15 outlines the
main OPL/XML elements of the module.

67

Figure 15: Outline of Workflow Bind of Duty Module

The <bind of duty constraints> element contains a set of <bind of duty constraint>
elements, which have two mandatory attributes task id and bound task id containing the
external workflow task identifiers of the two tasks to be bound.

Listing 25: OPL/XML: Example Workflow Bind of Duty Fragment� �
1 <module_wf_bind_duty_policy >

2 <bind_of_duty_constraints >

3 <bind_of_duty_constraint task_id=” t a s k : i n p u t c u s t ome r d a t a ”

4 bound_task_id=” t a s k : c u s t o m e r i d e n t i f i c a t i o n ”/>

5 <bind_of_duty_constraint task_id=” t a s k : c u s t o m e r i d e n t i f i c a t i o n ”

6 bound_task_id=” t a s k : c h e c k c r e d i t w o r t h i n e s s ”/>

7 <bind_of_duty_constraint task_id=” t a s k : c h o o s e b und l e d p r o d u c t ”

8 bound_task_id=” t a s k : p r i c e b u n d l e d p r o d u c t ”/>

9 </bind_of_duty_constraints >

10 </module_wf_bind_duty_policy >
 	
The DTD module-wf-bind-duty-policy.dtd of the workflow bind of duty constraints mod-

ule is shown in Listing 26.

Listing 26: OPL/XML: module-wf-bind-duty-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_bind_duty_policy (bind_of_duty_constraints)>

3 <!ELEMENT bind_of_duty_constraints (bind_of_duty_constraint *)>

4 <!ELEMENT bind_of_duty_constraint EMPTY >

5 <!ATTLIST bind_of_duty_constraint

6 task_id CDATA #REQUIRED

7 bound_task_id CDATA #REQUIRED

8 >
 	

6.13 Workflow Prerequisite Step Module in OPL/XML

The last workflow-related module is used to define the prerequisite tasks of a given task. The
OPL/XML specifications within this section correspond to the Object Z definitions in Section 4.6.
Its main elements are outlined in Figure 16.

68

Figure 16: Outline of Workflow Prerequisite Step Module

The element <prereq steps> contains a set of prerequisite constraints modeled by <prereq
step> elements. Each <prereq step> element contains two mandatory attributes prereq
task id and task id, where prereq task id needs to be fulfilled before task id may be exe-
cuted.

Listing 27: OPL/XML: Example Workflow Prerequisite Step Fragment� �
1 <module_wf_prereq_step_policy >

2 <prereq_steps >

3 <prereq_step prereq_task_id=” t a s k : c h e c k c r e d i t w o r t h i n e s s ”

4 task_id=” t a s k : c h e c k r a t i n g ”/>

5 <prereq_step prereq_task_id=” t a s k : c h e c k r a t i n g ”

6 task_id=” t a s k : b a n k s i g n s f o rm ”/>

7 </prereq_steps >

8 </module_wf_prereq_step_policy >
 	
The DTD module-wf-prereq-step-policy.dtd of the prerequisite step constraints module

is shown in Listing 28 below.

Listing 28: OPL/XML: module-wf-prereq-step-policy.dtd� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!ELEMENT module_wf_prereq_step_policy (prereq_steps)>

3 <!ELEMENT prereq_steps (prereq_step *)>

4 <!ELEMENT prereq_step EMPTY >

5 <!ATTLIST prereq_step

6 prereq_task_id CDATA #REQUIRED

7 task_id CDATA #REQUIRED

8 >
 	

7 A Banking Scenario

This section specifies a full policy example derived from the case study in Ap1.1. Section 7.1
defines the appropriate policy class as a combination of policy modules. While Section 7.2 states
the policy by means of an ad hoc intuitive set syntax, Section 7.3 gives the policy in the defined
XML syntax.

69

7.1 Policy Class

BankingPolicyWFPolicy
SepDutyPolicy
WFSepDutyPolicy
WFSepDutyCCPolicy
ExoContextPolicy

BankingPolicyWFEngine
SepDutyEngine
WFSepDutyM
WFSepDutyCCM
ExoContextEngine

7.2 Policy Example in OPL/Abstract

Basic Assignments: The relations TRA and TPA can be used to represent the assignment of
roles, permissions, and workflow steps as described in Table 1 of Ap1.1. Users, roles, permissions,
user assignment, and permission assignment are included appropriately.

Users (U)

users

user:klaus_meier,

user:karla_meier,

user:jochen_schmidt,

user:armin_mueller,

user:susanne_schaefer;

Roles (R)

roles

role:clerk_preprocessor,

role:clerk_postprocessor,

role:supervisor,

role:customer,

role:manager;

Permissions (P)

permissions

permission:query_customer_data { query(), CustomerData },

permission:update_customer_data { update(), CustomerData },

permission:prepare_ratingreport { prepare(), RatingReport },

permission:release_ratingreport { release(), RatingReport },

permission:post_ratingreport { post(), RatingReport },

permission:query_ratingreport { query(), RatingReport },

permission:update_ratingreport { update(), RatingReport },

permission:query_productbundle { query_avail_prod(), ProductBundle },

permission:modify_productbundle { modify(), ProductBundle },

permission:commit_productbundle { commit(), ProductBundle },

permission:print_contract { print(), Contract },

permission:sign_contract { sign(), Contract },

permission:update_contract { update(), Contract },

permission:open_account { open(), Account };

User Assignment (UA)

70

user:jochen_schmidt user-assigned-to role:clerk_preprocessor;

user:karla_meier user-assigned-to role:clerk_postprocessor;

user:klaus_meier user-assigned-to role:supervisor;

user:armin_mueller user-assigned-to role:manager;

user:susanne_schaefer user-assigned-to role:customer;

Permission Assigment to Roles (PA) and Context Contraints (PACC)

permission:query_customer_data permission-assigned-to role:clerk_preprocessor;

permission:update_customer_data permission-assigned-to role:clerk_preprocessor;

permission:prepare_ratingreport permission-assigned-to role:clerk_postprocessor;

permission:release_ratingreport permission-assigned-to role:clerk_postprocessor

under cc:cc1;

permission:post_ratingreport permission-assigned-to role:clerk_postprocessor;

permission:release_ratingreport permission-assigned-to role:supervisor

under cc:cc2;

permission:query_ratingreport permission-assigned-to role:clerk_postprocessor;

permission:update_ratingreport permission-assigned-to role:supervisor;

permission:query_productbundle permission-assigned-to role:clerk_postprocessor;

permission:modify_productbundle permission-assigned-to role:clerk_postprocessor;

permission:commit_productbundle permission-assigned-to role:clerk_postprocessor

under cc:cc1;

permission:commit_productbundle permission-assigned-to role:supervisor

under cc:cc2;

permission:print_contract permission-assigned-to role:clerk_postprocessor;

permission:sign_contract permission-assigned-to role:customer;

permission:sign_contract permission-assigned-to role:manager;

permission:update_contract permission-assigned-to role:manager;

permission:open_account permission-assigned-to role:clerk_postprocessor;

Context Constraints (CC)

cc:cc1 { creditbureau.mydomain.org , wfi-amount , (=<, 100k) } ;

cc:cc2 { creditbureau.mydomain.org , wfi-amount , (> , 100k) } ;

Task Role Assignment (TRA)

task:1_input_customer_data task-assigned-to-role role:clerk_preprocessor;

task:2_customer_ident task-assigned-to-role role:clerk_preprocessor;

task:3a_check_cred_worthin task-assigned-to-role role:clerk_postprocessor;

task:3b_check_cred_worthin task-assigned-to-role role:supervisor;

task:3b_check_cred_worthin task-assigned-to-role role:clerk_postprocessor;

task:3c_check_cred_worthin task-assigned-to-role role:clerk_postprocessor;

task:4_check_rating task-assigned-to-role role:clerk_postprocessor;

task:5_bank_signs_form task-assigned-to-role role:supervisor;

task:6_choose_bundled_prod task-assigned-to-role role:clerk_postprocessor;

task:7a_price_bundled_prod task-assigned-to-role role:clerk_postprocessor;

task:7b_price_bundled_prod task-assigned-to-role role:supervisor;

task:7b_price_bundled_prod task-assigned-to-role role:clerk_postprocessor;

task:8_print_opeing_form task-assigned-to-role role:clerk_postprocessor;

task:9_customer_signs_form task-assigned-to-role role:customer;

task:10_bank_signs_form task-assigned-to-role role:manager;

task:11_open_account task-assigned-to-role role:clerk_postprocessor;

Task Permission Assignment (TPA)

task:1_input_customer_data task-assigned-to-perm permission:query_customer_data;

task:1_input_customer_data task-assigned-to-perm permission:update_customer_data;

task:2_customer_ident task-assigned-to-perm permission:query_customer_data;

task:3a_check_cred_worthin task-assigned-to-perm permission:prepare_ratingreport;

task:3b_check_cred_worthin task-assigned-to-perm permission:release_ratingreport;

task:3c_check_cred_worthin task-assigned-to-perm permission:post_ratingreport;

task:4_check_rating task-assigned-to-perm permission:query_ratingreport;

task:5_bank_signs_form task-assigned-to-perm permission:update_ratingreport;

task:6_choose_bundled_prod task-assigned-to-perm permission:query_productbundle;

task:7a_price_bundled_prod task-assigned-to-perm permission:modify_productbundle;

71

task:7b_price_bundled_prod task-assigned-to-perm permission:commit_productbundle;

task:8_print_opeing_form task-assigned-to-perm permission:print_contract;

task:9_customer_signs_form task-assigned-to-perm permission:sign_contract;

task:10_bank_signs_form task-assigned-to-perm permission:sign_contract;

task:10_bank_signs_form task-assigned-to-perm permission:update_contract;

task:11_open_account task-assigned-to-perm permission:open_account;

Requirement 1: No person may be assigned to the two exclusive roles pre/post processor.

Static Separation of Duty (SSoD)

ssod (1) { role:clerk_preprocessor , role:clerk_postprocessor };

Requirement 2: A person may be assigned to the two exclusive roles but must not activate
them both within one process. This means that either they are activated in any state or they
have not been activated one after another.

We think it is not efficient to introduce and track a role activation history for each workflow
instance. Instead, we make use of the existing task history to ensure the same principle.

Dynamic Separation of Duty (DSoD)

dsod (1) { role:clerk_preprocessor , role:clerk_postprocessor };

History-based Dynamic Separation of Duty (HDSoDTP)

hdsodtp { { task:1_input_customer_data, task:2_customer_ident },

{ task:3a_check_cred_worthin, task:3b_check_cred_worthin,

task:3c_check_cred_worthin, task:4_check_rating,

task:6_choose_bundled_prod, task:7a_price_bundled_prod,

task:7b_price_bundled_prod, task:8_print_opeing_form,

task:11_open_account } } ;

Requirement 3: If the customer is an industrial customer, the master data must be verified
by an independent clerk.

Since in the example there is no “verification of master data” workflow step, we interpret the
“customer identification” step here as such. Hence, if the customer is an industrial customer,
then the customer identification needs to be carried out by a person other than the person who
performed “input customer data”.

Context Constraints (CC)

cc:cc3 { customerinformation.mydomain.org , obj-customer-type , (=, "industrial") } ;

History-based Dynamic Separation of Duty with Context Constraints (HDSoDTPCC)

hdsodtpcc if cc:cc3 then { {task:1_input_customer_data} ,

{task:2_customer_ident} } ;

Requirement 4: If the credit bureau rating is negative then the internal rating must be per-
formed by another clerk.

Similarly to Requirement 3, in case that the credit bureau rating is negative, a history-based
separation of duty constraint is placed in such a way that the workflow step “check rating” is
performed by a person other than the person who performed the remaining steps for the clerk
post processor.

Context Constraints (CC)

cc:cc4 { ratingserver.mydomain.org , internal-rating , (<, 0) } ;

History-based Dynamic Separation of Duty with Context Constraints (HDSoDTPCC)

hdsodtpcc if cc:cc4 then

72

{ { task:4_check_rating } ,

{ task:3a_check_cred_worthin, task:3b_check_cred_worthin,

task:3c_check_cred_worthin, task:6_choose_bundled_prod,

task:7a_price_bundled_prod, task:7b_price_bundled_prod,

task:8_print_opeing_form, task:11_open_account }

};

Requirement 5: If the internal rating is negative, then the case must be confirmed by a
supervisor.

This requirement can be realized in the same way as Requirement 4. Since the necessary
workflow step “supervisor confirms” is missing in the template, we also skip writing the appro-
priate constraint explicitly.

Requirement 6: A clerk may only price a bundled product if he did not perform the operation
modify() wrt to the specific offer.

History-based Dynamic Separation of Duty (HDSoDTP)

hdsodtp { { task:7a_price_bundled_prod },

{ task:7b_price_bundled_prod }

} ;

Requirement 7: If the customer is an industrial customer, then a clerk may perform tasks 1
to 9 or 10 but not both for the same customer.

History-based Dynamic Separation of Duty with Context Constraints (HDSoDTPCC)

hdsodtpcc if cc:cc3 then

{ { task:1_input_customer_data, task:2_customer_ident,

task:3a_check_cred_worthin, task:3b_check_cred_worthin,

task:3c_check_cred_worthin, task:4_check_rating,

task:5_bank_signs_form, task:6_choose_bundled_prod,

task:7a_price_bundled_prod, task:7b_price_bundled_prod,

task:8_print_opeing_form, task:9_customer_signs_form } ,

{ task:10_bank_signs_form }

};

Requirement 8: A principal may be a member of the two exclusive roles pre/post processor
and the complete set of authorizations acquired over these roles may cover a critical authorization
set, but a principal must not use all authorizations on the same object(s).

This is a variant of Requirement 9.

Requirement 9: A principal p1 may be assigned to the two exclusive roles post processor and
supervisor. He may also activate them but not use them on the same object (Product Bundle).

Within a process instance this requirement is already fulfilled by the policy for Requirement 6.
If this property is supposed to be satisfied throughout the lifetime of a user, we need to introduce
a policy such as the following.

Object-based separation of duty (ObjSoD)

objsod { ProductBundle }

7.3 Policy Example in OPL/XML

Listing 29: OPL/XML: Banking Policy Example� �
73

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <!DOCTYPE policy_object SYSTEM ” po l i c y−ob j e c t . dtd ”>

3 <policy_object >

4

5 <policy_object_attributes >

6 <attribute key=”name” value=” Po l i c y−ABC”/>

7 <attribute key=” v e r s i o n ” value=” 1 .0 ”/>

8 <attribute key=” date ” value=”2008−02−23”/>

9 <attribute key=” c r e a t o r ” value=” rwo l f ”/>

10 <attribute key=” d e s c r i p t i o n ” value=”ORKA Re f e r enc e S c ena r i o ”/>

11 </policy_object_attributes >

12

13 <active_modules >

14 <active_module name=” modu l e r b a c c o r e p o l i c y ” />

15 <active_module name=” modu l e e x o c o n t e x t p o l i c y ” />

16 <active_module name=” modu l e w f c o r e p o l i c y ” />

17 <active_module name=” modu l e s e p d u t y p o l i c y ” />

18 <active_module name=” modu l e w f s e p d u t y p o l i c y ” />

19 <active_module name=” modu l e w f s e p d u t y c c p o l i c y ” />

20 <active_module name=” modu l e o b j s e p d u t y p o l i c y ” />

21 </active_modules >

22

23 <policy_object_modules >

24

25 <!-- ========== Module RBACCore ========== -->

26 <module_rbac_core_policy >

27

28 <users >

29 <user user_id=” u s e r : k l a u s m e i e r ”/>

30 <user user_id=” u s e r : k a r l a m e i e r ”/>

31 <user user_id=” u s e r : j o c h e n s c hm i d t ”/>

32 <user user_id=” u s e r : a rm i n mu e l l e r ”/>

33 <user user_id=” u s e r : s u s a n n e s c h a e f e r ”/>

34 </users >

35

36 <roles >

37 <role role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

38 <role role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

39 <role role_id=” r o l e : s u p e r v i s o r ”/>

40 <role role_id=” r o l e : c u s t ome r ”/>

41 <role role_id=” r o l e :manag e r ”/>

42 </roles >

43

44 <permissions >

45 <permission permission_id=” p e rm i s s i o n : q u e r y c u s t ome r d a t a ”>

46 <operation operation_id=” query () ”/>

47 <object object_id=”CustomerData”/>

48 </permission >

49 <permission permission_id=” p e rm i s s i o n : u p d a t e c u s t ome r d a t a ”>

50 <operation operation_id=” update () ”/>

51 <object object_id=”CustomerData”/>

52 </permission >

53 <permission permission_id=” p e r m i s s i o n : p r e p a r e r a t i n g r e p o r t ”>

54 <operation operation_id=” p r epa r e () ”/>

55 <object object_id=” Rat ingRepo r t ”/>

56 </permission >

57 <permission permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”>

58 <operation operation_id=” r e l e a s e () ”/>

59 <object object_id=” Rat ingRepo r t ”/>

60 </permission >

74

61 <permission permission_id=” p e r m i s s i o n : p o s t r a t i n g r e p o r t ”>

62 <operation operation_id=” pos t () ”/>

63 <object object_id=” Rat ingRepo r t ”/>

64 </permission >

65 <permission permission_id=” p e r m i s s i o n : q u e r y r a t i n g r e p o r t ”>

66 <operation operation_id=” query () ”/>

67 <object object_id=” Rat ingRepo r t ”/>

68 </permission >

69 <permission permission_id=” p e r m i s s i o n : u p d a t e r a t i n g r e p o r t ”>

70 <operation operation_id=” update () ”/>

71 <object object_id=” Rat ingRepo r t ”/>

72 </permission >

73 <permission permission_id=” p e rm i s s i o n : q u e r y p r o d u c t b u n d l e ”>

74 <operation operation_id=” q u e r y a v a i l p r o d () ”/>

75 <object object_id=”ProductBundle ”/>

76 </permission >

77 <permission permission_id=” p e rm i s s i o n :mod i f y p r o d u c t b und l e ”>

78 <operation operation_id=”modi fy () ”/>

79 <object object_id=”ProductBundle ”/>

80 </permission >

81 <permission permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”>

82 <operation operation_id=”commit () ”/>

83 <object object_id=”ProductBundle ”/>

84 </permission >

85 <permission permission_id=” p e r m i s s i o n : p r i n t c o n t r a c t ”>

86 <operation operation_id=” p r i n t () ”/>

87 <object object_id=” Cont rac t ”/>

88 </permission >

89 <permission permission_id=” p e r m i s s i o n : s i g n c o n t r a c t ”>

90 <operation operation_id=” s i g n () ”/>

91 <object object_id=” Cont rac t ”/>

92 </permission >

93 <permission permission_id=” p e rm i s s i o n : u p d a t e c o n t r a c t ”>

94 <operation operation_id=” update () ”/>

95 <object object_id=” Cont rac t ”/>

96 </permission >

97 <permission permission_id=” p e rm i s s i o n : o p e n a c c o un t ”>

98 <operation operation_id=”open () ”/>

99 <object object_id=”Account ”/>

100 </permission >

101 </permissions >

102

103 <user_assignments >

104 <user_assignment user_id=” u s e r : j o c h e n s c hm i d t ”

105 role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

106 <user_assignment user_id=” u s e r : k a r l a m e i e r ”

107 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

108 <user_assignment user_id=” u s e r : k l a u s m e i e r ”

109 role_id=” r o l e : s u p e r v i s o r ”/>

110 <user_assignment user_id=” u s e r : a rm i n mu e l l e r ”

111 role_id=” r o l e :manag e r ”/>

112 <user_assignment user_id=” u s e r : s u s a n n e s c h a e f e r ”

113 role_id=” r o l e : c u s t ome r ”/>

114 </user_assignments >

115

116 <permission_assignments >

117 <permission_assignment permission_id=” p e rm i s s i o n : q u e r y c u s t ome r d a t a ”

118 role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

119 <permission_assignment permission_id=” p e rm i s s i o n : u p d a t e c u s t ome r d a t a ”

120 role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

75

121 <permission_assignment permission_id=” p e r m i s s i o n : p r e p a r e r a t i n g r e p o r t ”

122 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

123 <permission_assignment permission_id=” p e r m i s s i o n : p o s t r a t i n g r e p o r t ”

124 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

125 <permission_assignment permission_id=” p e r m i s s i o n : q u e r y r a t i n g r e p o r t ”

126 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

127 <permission_assignment permission_id=” p e r m i s s i o n : u p d a t e r a t i n g r e p o r t ”

128 role_id=” r o l e : s u p e r v i s o r ”/>

129 <permission_assignment permission_id=” p e rm i s s i o n : q u e r y p r o d u c t b u n d l e ”

130 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

131 <permission_assignment permission_id=” p e rm i s s i o n :mod i f y p r o d u c t b und l e ”

132 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

133 <permission_assignment permission_id=” p e r m i s s i o n : p r i n t c o n t r a c t ”

134 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

135 <permission_assignment permission_id=” p e r m i s s i o n : s i g n c o n t r a c t ”

136 role_id=” r o l e : c u s t ome r ”/>

137 <permission_assignment permission_id=” p e r m i s s i o n : s i g n c o n t r a c t ”

138 role_id=” r o l e :manag e r ”/>

139 <permission_assignment permission_id=” p e rm i s s i o n : u p d a t e c o n t r a c t ”

140 role_id=” r o l e :manag e r ”/>

141 <permission_assignment permission_id=” p e rm i s s i o n : o p e n a c c o un t ”

142 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

143 <permission_assignment permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”

144 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

145 <permission_assignment permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”

146 role_id=” r o l e : s u p e r v i s o r ”/>

147 <permission_assignment permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”

148 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

149 <permission_assignment permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”

150 role_id=” r o l e : s u p e r v i s o r ”/>

151 </permission_assignments >

152

153 </module_rbac_core_policy >

154

155

156 <!-- ========== Module ExoContext ========== -->

157 <module_exo_context_policy >

158

159 <context_constraints >

160

161 <context_constraint cc_id=” c c : c c 1 ”>

162 <context_function_id id=” equa l−or−l e s s−than ”/>

163 <context_function_parameters >

164 <parameter value=” c r e d i t b u r e a u p r o v i d e r . g e t w f i amount () ” type=” i n t ”

165 context=” ye s ” />

166 <parameter value=”100000” type=” i n t ” context=”no”/>

167 </context_function_parameters >

168 </context_constraint >

169

170 <context_constraint cc_id=” c c : c c 2 ”>

171 <context_function_id id=”more−than ”/>

172 <context_function_parameters >

173 <parameter value=” c r e d i t b u r e a u p r o v i d e r . g e t w f i amount () ” type=” i n t ”

174 context=” ye s ” />

175 <parameter value=”100000” type=” i n t ” context=”no”/>

176 </context_function_parameters >

177 </context_constraint >

178

179 <!-- For Requirement 3 (Part 1) -->

180 <context_constraint cc_id=” c c : c c 3 ”>

76

181 <context_function_id id=” equa l s ”/>

182 <context_function_parameters >

183 <parameter value=

184 ” c u s t ome r i n f o rma t i o n p r o v i d e r . g e t c u s t ome r t y p e (pa ramete r s . cust−i d) ”

185 type=” s t r i n g ” context=” ye s ” />

186 <parameter value=” i n d u s t r i a l ” type=” s t r i n g ” context=”no” />

187 </context_function_parameters >

188 </context_constraint >

189

190 <!-- For Requirement 4 (Part 1) -->

191 <context_constraint cc_id=” c c : c c 4 ”>

192 <context_function_id id=” l e s s−than ”/>

193 <context_function_parameters >

194 <parameter value=” r a t i n g s e r v e r p r o v i d e r . g e t i n t e r n a l r a t i n g () ”

195 type=” i n t ” context=” ye s ” />

196 <parameter value=”0” type=” i n t ” context=”no” />

197 </context_function_parameters >

198 </context_constraint >

199

200 </context_constraints >

201

202 <context_constraint_assignments >

203 <pacc cc_id=” c c : c c 1 ” permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”

204 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

205 <pacc cc_id=” c c : c c 2 ” permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”

206 role_id=” r o l e : s u p e r v i s o r ”/>

207 <pacc cc_id=” c c : c c 1 ” permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”

208 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

209 <pacc cc_id=” c c : c c 2 ” permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”

210 role_id=” r o l e : s u p e r v i s o r ”/>

211 </context_constraint_assignments >

212

213 </module_exo_context_policy >

214

215

216 <!-- ========== Module WFCore ========== -->

217 <module_wf_core_policy >

218

219 <task_permission_assignments >

220

221 <task_permission_assignment task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”

222 permission_id=” p e rm i s s i o n : q u e r y c u s t ome r d a t a ”

223 />

224 <task_permission_assignment task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”

225 permission_id=” p e rm i s s i o n : u p d a t e c u s t ome r d a t a ”

226 />

227 <task_permission_assignment task_id=” t a s k : 2 c u s t om e r i d e n t ”

228 permission_id=” p e rm i s s i o n : q u e r y c u s t ome r d a t a ”

229 />

230 <task_permission_assignment task_id=” t a s k : 3 a c h e c k c r e d wo r t h i n ”

231 permission_id=” p e r m i s s i o n : p r e p a r e r a t i n g r e p o r t ”

232 />

233 <task_permission_assignment task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”

234 permission_id=” p e r m i s s i o n : r e l e a s e r a t i n g r e p o r t ”

235 />

236 <task_permission_assignment task_id=” t a s k : 3 c c h e c k c r e d wo r t h i n ”

237 permission_id=” p e r m i s s i o n : p o s t r a t i n g r e p o r t ”

238 />

239 <task_permission_assignment task_id=” t a s k : 4 c h e c k r a t i n g ”

240 permission_id=” p e r m i s s i o n : q u e r y r a t i n g r e p o r t ”

77

241 />

242 <task_permission_assignment task_id=” t a s k : 5 b a n k s i g n s f o rm ”

243 permission_id=” p e r m i s s i o n : u p d a t e r a t i n g r e p o r t ”

244 />

245 <task_permission_assignment task_id=” t a s k : 6 c h o o s e b und l e d p r o d ”

246 permission_id=” p e rm i s s i o n : q u e r y p r o d u c t b u n d l e ”

247 />

248 <task_permission_assignment task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”

249 permission_id=” p e rm i s s i o n :mod i f y p r o d u c t b und l e ”

250 />

251 <task_permission_assignment task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”

252 permission_id=” pe rm i s s i o n : c ommi t p r oduc t bund l e ”

253 />

254 <task_permission_assignment task_id=” t a s k : 8 p r i n t o p e n i n g f o rm ”

255 permission_id=” p e r m i s s i o n : p r i n t c o n t r a c t ”

256 />

257 <task_permission_assignment task_id=” t a s k : 9 c u s t ome r s i g n s f o rm ”

258 permission_id=” p e r m i s s i o n : s i g n c o n t r a c t ”

259 />

260 <task_permission_assignment task_id=” t a s k : 1 0 b a n k s i g n s f o rm ”

261 permission_id=” p e r m i s s i o n : s i g n c o n t r a c t ”

262 />

263 <task_permission_assignment task_id=” t a s k : 1 0 b a n k s i g n s f o rm ”

264 permission_id=” p e rm i s s i o n : u p d a t e c o n t r a c t ”

265 />

266 <task_permission_assignment task_id=” t a s k : 1 1 op en a c c oun t ”

267 permission_id=” p e rm i s s i o n : o p e n a c c o un t ”

268 />

269

270 </task_permission_assignments >

271

272 <task_role_assignments >

273

274 <task_role_assignment task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”

275 role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

276 <task_role_assignment task_id=” t a s k : 2 c u s t om e r i d e n t ”

277 role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

278 <task_role_assignment task_id=” t a s k : 3 a c h e c k c r e d wo r t h i n ”

279 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

280 <task_role_assignment task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”

281 role_id=” r o l e : s u p e r v i s o r ”/>

282 <task_role_assignment task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”

283 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

284 <task_role_assignment task_id=” t a s k : 3 c c h e c k c r e d wo r t h i n ”

285 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

286 <task_role_assignment task_id=” t a s k : 4 c h e c k r a t i n g ”

287 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

288 <task_role_assignment task_id=” t a s k : 5 b a n k s i g n s f o rm ”

289 role_id=” r o l e : s u p e r v i s o r ”/>

290 <task_role_assignment task_id=” t a s k : 6 c h o o s e b und l e d p r o d ”

291 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

292 <task_role_assignment task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”

293 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

294 <task_role_assignment task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”

295 role_id=” r o l e : s u p e r v i s o r ”/>

296 <task_role_assignment task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”

297 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

298 <task_role_assignment task_id=” t a s k : 8 p r i n t o p e n i n g f o rm ”

299 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

300 <task_role_assignment task_id=” t a s k : 9 c u s t ome r s i g n s f o rm ”

78

301 role_id=” r o l e : c u s t ome r ”/>

302 <task_role_assignment task_id=” t a s k : 1 0 b a n k s i g n s f o rm ”

303 role_id=” r o l e :manag e r ”/>

304 <task_role_assignment task_id=” t a s k : 1 1 op en a c c oun t ”

305 role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

306

307 </task_role_assignments >

308

309 </module_wf_core_policy >

310

311

312 <!-- ========== Module ExoContext ========== -->

313 <module_sep_duty_policy >

314

315 <!-- For Requirement 1 -->

316 <static_separation_of_duty >

317 <critical_role_sets >

318 <critical_role_set cardinality=”1”>

319 <critical_roles >

320 <critical_role role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

321 <critical_role role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

322 </critical_roles >

323 </critical_role_set >

324 </critical_role_sets >

325 </static_separation_of_duty >

326

327 <!-- For Requirement 2 (Part 1) -->

328 <dynamic_separation_of_duty >

329 <critical_role_sets >

330 <critical_role_set cardinality=”1”>

331 <critical_roles >

332 <critical_role role_id=” r o l e : c l e r k p r e p r o c e s s o r ”/>

333 <critical_role role_id=” r o l e : c l e r k p o s t p r o c e s s o r ”/>

334 </critical_roles >

335 </critical_role_set >

336 </critical_role_sets >

337 </dynamic_separation_of_duty >

338

339 </module_sep_duty_policy >

340

341

342 <!-- ========== Module WFSepDuty ========== -->

343 <module_wf_sep_duty_policy >

344

345 <hdsodtp >

346 <!-- For Requirement 2 (Part 2) -->

347 <hdsodtp_partitioning >

348 <hdsodtp_partition >

349 <partition_task task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”/>

350 <partition_task task_id=” t a s k : 2 c u s t om e r i d e n t ”/>

351 </hdsodtp_partition >

352 <hdsodtp_partition >

353 <partition_task task_id=” t a s k : 3 a c h e c k c r e d wo r t h i n ”/>

354 <partition_task task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”/>

355 <partition_task task_id=” t a s k : 3 c c h e c k c r e d wo r t h i n ”/>

356 <partition_task task_id=” t a s k : 4 c h e c k r a t i n g ”/>

357 <partition_task task_id=” t a s k : 6 c h o o s e b und l e d p r o d ”/>

358 <partition_task task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”/>

359 <partition_task task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”/>

360 <partition_task task_id=” t a s k : 9 p r i n t o p e n i n g f o rm ”/>

79

361 <partition_task task_id=” t a s k : 1 1 op en a c c oun t ”/>

362 </hdsodtp_partition >

363 </hdsodtp_partitioning >

364

365 <!-- For Requirement 6 -->

366 <hdsodtp_partitioning >

367 <hdsodtp_partition >

368 <partition_task task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”/>

369 </hdsodtp_partition >

370 <hdsodtp_partition >

371 <partition_task task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”/>

372 </hdsodtp_partition >

373 </hdsodtp_partitioning >

374 </hdsodtp >

375

376 </module_wf_sep_duty_policy >

377

378

379 <!-- ========== Module WFSepDutyCC ========== -->

380 <module_wf_sep_duty_cc_policy >

381

382 <hdsodtpcc >

383

384 <!-- For Requirement 3 (Part 2) -->

385 <hdsodtpcc_partitioning cc_id=” c c : c c 3 ”>

386 <hdsodtpcc_partition >

387 <cc_partition_task task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”/>

388 </hdsodtpcc_partition >

389 <hdsodtpcc_partition >

390 <cc_partition_task task_id=” t a s k : 2 c u s t om e r i d e n t ”/>

391 </hdsodtpcc_partition >

392 </hdsodtpcc_partitioning >

393

394 <!-- For Requirement 4 (Part 2) -->

395 <hdsodtpcc_partitioning cc_id=” c c : c c 4 ”>

396 <hdsodtpcc_partition >

397 <cc_partition_task task_id=” t a s k : 4 c h e c k r a t i n g ”/>

398 </hdsodtpcc_partition >

399 <hdsodtpcc_partition >

400 <cc_partition_task task_id=” t a s k : 3 a c h e c k c r e d wo r t h i n ”/>

401 <cc_partition_task task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”/>

402 <cc_partition_task task_id=” t a s k : 3 c c h e c k c r e d wo r t h i n ”/>

403 <cc_partition_task task_id=” t a s k : 6 c h o o s e b und l e d p r o d ”/>

404 <cc_partition_task task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”/>

405 <cc_partition_task task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”/>

406 <cc_partition_task task_id=” t a s k : 8 p r i n t o p e n i n g f o rm ”/>

407 <cc_partition_task task_id=” t a s k : 1 1 op en a c c oun t ”/>

408 </hdsodtpcc_partition >

409 </hdsodtpcc_partitioning >

410

411 <!-- For Requirement 7 -->

412 <hdsodtpcc_partitioning cc_id=” c c : c c 3 ”>

413 <hdsodtpcc_partition >

414 <cc_partition_task task_id=” t a s k : 1 i n p u t c u s t ome r d a t a ”/>

415 <cc_partition_task task_id=” t a s k : 2 c u s t om e r i d e n t ”/>

416 <cc_partition_task task_id=” t a s k : 3 a c h e c k c r e d wo r t h i n ”/>

417 <cc_partition_task task_id=” t a s k : 3 b c h e c k c r e d wo r t h i n ”/>

418 <cc_partition_task task_id=” t a s k : 3 c c h e c k c r e d wo r t h i n ”/>

419 <cc_partition_task task_id=” t a s k : 4 c h e c k r a t i n g ”/>

420 <cc_partition_task task_id=” t a s k : 5 b a n k s i g n s f o rm ”/>

80

421 <cc_partition_task task_id=” t a s k : 6 c h o o s e b und l e d p r o d ”/>

422 <cc_partition_task task_id=” t a s k : 7 a p r i c e b u n d l e d p r o d ”/>

423 <cc_partition_task task_id=” t a s k : 7 b p r i c e b u n d l e d p r o d ”/>

424 <cc_partition_task task_id=” t a s k : 8 p r i n t o p e n i n g f o rm ”/>

425 <cc_partition_task task_id=” t a s k : 9 c u s t ome r s i g n s f o rm ”/>

426 </hdsodtpcc_partition >

427 <hdsodtpcc_partition >

428 <cc_partition_task task_id=” t a s k : 1 0 b a n k s i g n s f o rm ”/>

429 </hdsodtpcc_partition >

430 </hdsodtpcc_partitioning >

431

432 </hdsodtpcc >

433

434 </module_wf_sep_duty_cc_policy >

435

436

437 <!-- ========== Module ObjSepDuty ========== -->

438 <module_obj_sep_duty_policy >

439

440 <objsods >

441 <!-- For Requirement 9 -->

442 <objsod object_id=”ProductBundle ” />

443 </objsods >

444

445 </module_obj_sep_duty_policy >

446

447 </policy_object_modules >

448

449 </policy_object >
 	

8 Conclusions

Within this report we have presented the language specification of OPL, the policy language that
was developed in the ORKA research project. We have outlined our modularization approach
to support a variety of access control principles. The current library of policy modules supports
role hierarchies, separation of duty constraints, context constraints, chinese wall, object-based
separation of duty constraints, workflow-based constraints, history-based constraints, bind of
duty constraints, and cardinality constraints. We have explained how to combine these policy
modules in order to get the required expressiveness without increasing the complexity in language
specification and management. The OPL language is based on a formal semantics by means of
Object Z and has a XML-based expression syntax to specify policies persistently. Within the
ORKA research project the OPL language has been practically tested using a real-world scenario,
various performance analyses have been performed. ORKA has developed and implemented
a large set of tools for OPL such as various policy enforcement engines, a graphical policy
administration tool, and tools for policy validation and for reasoning about policy properties.

81

References

[1] The ORKA Project Homepage http://www.orka-projekt.de/index-en.htm (2009-01-15).

[2] G.-J. Ahn. The RCL 2000 language for specifying role-based authorization constraints. PhD
thesis, George Mason University, Fairfax, Virginia, 1999.

[3] Christopher Alm. An Extensible Framework for Specifying and Reasoning About Com-
plex Role-Based Access Control Models. Technical Report MIP-0901, Fakultät für In-
formatik und Mathematik, Universität Passau, Germany, 2009. http://www.fim.uni-
passau.de/en/research/forschungsberichte/mip-0901.html (2009-01-29).

[4] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. ACM TISSEC, 2(1):65–104, 1999.

[5] Elisa Bertino, Jason Crampton, and Federica Paci. Access Control and Authorization
Constraints for WS-BPEL. In ICWS ’06: Proceedings of the IEEE International Conference
on Web Services (ICWS’06), pages 275–284. IEEE Computer Society, 2006.

[6] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor. Access Control in Dynamic XMLBased
Web Services with X-RBAC. 2003.

[7] David F.C. Brewer and Michael J. Nash. The Chinese Wall Security Policy. In Proceedings
of IEEE Symposium on Security and Privacy, pages 206–214, 1989.

[8] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer security
policies. IEEESSP, pages 184–194, 1987.

[9] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Ponder Policy
Specification Language. LNCS, 1995:18–39, 2001.

[10] Roger Duke and Gordon Rose. Formal Object-Oriented Specification Using Object-Z.
Macmillan Press, 2000.

[11] D. Ferraiolo and R. Kuhn. Role-Based Access Control. In 15th NIST-NCSC National
Computer Security Conference, pages 554–563, 1992.

[12] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access
Control. Artech House Publishers, 2003.

[13] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy
Chandramouli. Proposed nist standard for role-based access control. ACM Trans. Inf.
Syst. Secur., 4(3):224–274, 2001.

[14] C.K. Georgiadis, I. Mavridis, G. Pangalos, and R.K. Thomas. Flexible team-based access
control using contexts. pages 21–27, May 2001.

[15] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On the Formal Definition of Separation-of-Duty
Policies and their Composition. In Proceedings of the 1998 IEEE Symposium on Security
and Privacy, pages 172–185. IEEE, 1998.

[16] Michael Hitchens and Vijay Varadharajan. Tower: A Language for Role Based Access Con-
trol. In POLICY ’01: Proceedings of the International Workshop on Policies for Distributed
Systems and Networks, pages 88–106. Springer-Verlag, 2001.

82

[17] Jacques Wainer and Paulo Barthelmess and Akhil Kumar. W-RBAC - A Workflow Security
Model Incorporating Controlled Overriding of Constraints. Int. J. Cooperative Inf. Syst.,
12(4):455–485, 2003.

[18] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access
control model. IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

[19] Tim Moses et al. eXtensible Access Control Markup Language (XACML) Version 2.0. 2005.
OASIS Standard.

[20] M. J. Nash and K. R. Poland. Some conundrums concerning separation of duty. pages
201–207, 1990.

[21] Gustaf Neumann and Mark Strembeck. An Integrated Approach to Engineer and Enforce
Context Constraints in RBAC Environments. ACM Transactions on Information and Sys-
tem Security, 7(3):392–427, 2004.

[22] Ravi Sandhu. Role hierarchies and constraints for lattice-based access control. In ESORICS
1996: Proceedings of the Fourth European Symposium on Research in Computer Security,
pages 65–79. Springer-Verlag, 1996.

[23] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based
Access Control Models. IEEE Computer, 29(2):38–47, 1996.

[24] Andreas Schaad, Volkmar Lotz, and Karsten Sohr. A Model-checking Approach to
Analysing Organisational Controls in a Loan Origination Process. In SACMAT, pages
139–149, 2006.

[25] Richard T. Simon and Mary Ellen Zurko. Separation of Duty in Role-Based Environments.
In IEEE Computer Security Foundations Workshop, pages 183–194, 1997.

[26] Karsten Sohr, Michael Drouineaud, and Gail-Joon Ahn. Formal Specification of Role-Based
Security Policies for Clinical Information Systems. In SAC ’05: Proceedings of the 2005
ACM Symposium on Applied Computing, pages 332–339. ACM, 2005.

[27] American National Standard. Role Based Access Control. 2004. ANSI INCITS 359-2004,
American National Standards Institute.

Acknowledgments

We are grateful to Roland Illig with whom we worked together on the definition of context
constraints. Thank goes to Michael Drouineaud for the fruitful discussions about the Object Z
specifications. We would also like to thank Ute Faltin for her support in the XML specifications.

83

