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Abstract. To date, no methodical approach has been found to integrate
multiple access control extensions and concepts proposed for RBAC in an
access control model that deals with the complexity of such a model and
still leaves the model open for further extensions. As we know from the
case studies of our research project [1], bringing together various access
control concepts such as separation of duty, workflow-related concepts,
and context constraints is necessary in real world scenarios such as in
the health care sector and in the financial sector.
To solve this problem, this report presents an extensible and flexible
framework for the specification of complex RBAC models that is based
on the modularization of access control concepts. Each concept is packed
into a so-called authorization module and can then be reused and com-
bined with other modules in order to specify a full access control model.
The framework can be used to define new access control concepts rapidly
and concisely as well as to explore and analyze them thoroughly. Further-
more, it is capable of delivering a policy data model for each generated
access control model which can be used to develop an appropriate policy
language.
As a method we use formal, object-oriented specification in the Object-
Z notation. In particular, we demonstrate how formal reasoning can be
applied in order to provide an in-depth analysis of the specification.

1 Introduction

A multitude of access control concepts and models based on the role-based ac-
cess control (RBAC) paradigm addressing various access control requirements
has been proposed. Examples are role hierarchies [5], context constraints [37],
workflow related concepts [33, 11, 34], separation of duty [25, 5], obligation [36],
and temporary delegation of rights [18, 51]. These access control concepts are
specified as an extension to some notion of RBAC at the core by using a specifi-
cation method that is appropriate for the particular purpose. The methods used
range from informal descriptions including formulas and diagrams to declarative
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programming languages such as Datalog and specification languages such as Z.
While the chosen methods are particularly appropriate to make clear the idea
of the newly proposed concepts, the situation can become complicated when it
comes to reusing, combining, and integrating concepts from different models in
order to specify them in a complex combined model. Hence, the problem is that
we have many access control concepts for various scenarios but there seems to be
no suitable method available to put them together that also handles complexity
and still leaves the generated models open for further extensions.

As an example, consider the RBAC standard [5] striving for an integration
of four concepts—namely roles, role hierarchy, and two variants of separation
of duty. They are specified by using informal descriptions plus fragments of the
Z specification language. We think that it will not be feasible to extend the
framework presented in the standard by additional concepts because the way
they are integrated has already reached its limits. We see the reason for this in
that this way is error-prone and will easily lead to inconsistencies. Even though
Li et al. [35] achieved a great deal of improvement, their approach is still based
on the same methods and we think it does not solve the general problem.

Combined access control models incorporating various concepts originating
from different models are necessary in real world scenarios such as in the financial
sector or in the health care sector [1]. The construction of an authorization engine
for such a setting needs to be based on an appropriate authorization model
combining the required concepts. Furthermore, if a unified reference model is
established such as the RBAC standard, it should be based on a solid formal
method addressing extensibility, complexity handling, reusability, and flexibility.

To address these issues the goal of this report is to provide a flexible frame-
work for specifying complex and extensible RBAC models in a unified way. In
particular our contributions are:

– We have developed a framework for the specification of complex RBAC mod-
els (cf. Sect. 3 and 4). It is based on the modularization of the participating
access control concepts. Each concept is packed into a so-called authorization
module and can then be reused and combined with other modules in order
to form an access control model. The framework is designed with the sys-
tematic approach of formal object-oriented specification using Object-Z [22].
We show how to use multiple inheritance in Object-Z in order to modularize
access control concepts and explain the main features of the framework.
Firstly, the framework can be applied in order to generate a software model
for the implementation of an authorization engine supporting a certain com-
bination of access control concepts. Secondly, with the framework new con-
cepts can be defined and explored rapidly and concisely. Finally, the frame-
work as a whole can be used to establish a reference model for RBAC in-
cluding various access control concepts which could not be done before in
this way.

– We demonstrate how to apply formal reasoning in order to provide an in-
depth analysis of the authorization modules (cf. Sect. 6). Thereby we can, for
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example, prove important security properties as well as argue about design
decisions.

– We are currently developing a set of authorization modules. A recent ver-
sion is available online [7]. We already support role hierarchy, separation of
duty, context constraints, Chinese wall, and workflow-related constraints in-
cluding history-based separation of duty, prerequisites, binding of duty, and
cardinality constraints. In this report we show excerpts from the specified
modules in order to demonstrate the functionality and the capabilities of the
framework. It should be noted that these modules also contain innovative
aspects, which will be discussed as future work.
The current set of modules builds the foundation of the authorization model
of the ORKA research project [1]. The goal of ORKA is to develop a flexible
and extensible authorization architecture that is able to enforce a wide range
of organizational control principles and access control concepts.

– We have incorporated a functionality that each authorization module spec-
ifies which part of it is supposed to be included in the policy (cf. Sect. 5).
Thereby the framework is able to deliver an abstract version of a policy
language (i.e. a policy data model) for each generated access control model.
We show how to use instantiation and polymorphism in Object-Z for this
purpose. This feature is particularly useful for the definition of the policy
language or policy representation format used by an authorization engine.
Therefore, the development of the ORKA policy language (OPL) is based
on our framework and XML [1].

This report is organized as follows. Section 2 gives more information on the
motivation of a framework for combining access control concepts and explains
the rationale for the method we used. While Section 3 introduces our idea from a
high-level perspective, Sections 4 and 5 provide the necessary details. In Section 6
we demonstrate how to reason about the specification and discuss how we can
benefit from such an analysis. Section 7 compares our solution with related work,
Section 8 states our ideas for further work, and Section 9 concludes the report.

2 Motivation and Method

2.1 Combining Access Control Concepts

Bringing together various access control concepts such as separation of duty,
workflow-related concepts, and context constraints is necessary in order to es-
tablish a unified reference model for RBAC as well as for the construction of an
authorization engine supporting a certain combination of such principles. From
the results of the case studies conducted as part of our research project [1],
we know that various combinations of concepts are particularly required in real
world scenarios, for example, in the health care sector and in the financial sector.

The ANSI RBAC standard is an example that combines four concepts: roles,
role hierarchy, and two variants of separation of duty. Their integration is en-
tirely based on informal textual descriptions without using a dedicated method.
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By using the ad-hoc method instead, the standard is on the one hand at the limit
of being able to handle the complexity of the integration of the four concepts.
On the other hand, it would be tedious and cumbersome to extend it by further
concepts while reusing the existing definitions. In our opinion, textual descrip-
tions are error-prone and should not have a normative character. Instead they
should be replaced by a solid, dedicated specification method and serve only for
illustrative purposes.

Another prominent example is the access control model of XACML, which
is introduced by informal descriptions and diagrams [36]. The drawbacks be-
came evident when XACML was unable to be extended to support separation
of duty [8]. To date, no proper solution has been found, yet. Current solutions
such as Crampton’s approach [17] based on blacklists and XACML’s obligation
mechanism do not solve the problem fundamentally, but rather are developed as
a patch work. We see the reason for this in that the underlying access control
model of XACML was not designed to be extensible and was not defined by using
a dedicated method suitable to achieve extensibility. Note that XACML’s built-
in extensibility is a powerful concept that can involve almost arbitrary context
information into the process of access decision making, but it cannot be used to
implement separation of duty properly.

In general, we see the key characteristics of access control models integrating
multiple access control concepts as follows:

– They are complex: while integrating multiple concepts in one model the
number of formulas and definitions increases. These definitions and formulas
may interact or rely on each other and thus they may overlap or even conflict
with each other. The same is true for textual descriptions. Already the ANSI
standard is a fairly complex model with many formulas and definitions for
four basic concepts.

– They need to be open for extensions and change: once new access control
requirements arise, for example, due to the arrival of new technologies, it
will be necessary to adapt an access control model accordingly. We think
that the trend of newly emerging and changing requirements, as recognized
by Botha [14], still continues.

– They need to be precise: such a model should not leave room for ambiguities
in order to avoid misinterpretation and hidden design flaws.

These issues are not addressed by ad-hoc combination solutions. As a conse-
quence, ad-hoc textual combination is not sufficient to specify complex RBAC
models including various access control concepts and principles. They need to
be replaced by a systematic approach addressing the mentioned drawbacks.

2.2 Policy Data Modeling

A policy language is a common vehicle to make the policies that are run by
some authorization engine (which in turn is based on some access control model)
manageable with regard to administration and enforcement. Therefore, it may
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be necessary to develop a policy language for an access control model which is
able to represent the policies of the model. There are, for example, approaches
adding such a representation format for policies to an RBAC-based model [27,
12, 10].

For this reason, we incorporate data modeling facilities for a policy language.
Having these facilities, it is not necessary to develop a policy language from
scratch each time a model generated by the framework is implemented. Instead,
the data model for policies, which is generated in conjunction, can be used as
an abstract version of a concrete policy language.

Note that this approach of developing a policy language is driven by the un-
derlying access control model. There are also language-driven approaches where
the development of the access control model is driven by the syntax of a policy
language [36, 19].

As part of the ORKA research project [1], a policy language on the basis of
our framework and XML is currently under development. For this language the
flexibility and extensibility of the framework is inevitable because ORKA aims to
incorporate access control principles for various application scenarios including
banking and health care. Furthermore, it strives for being open for extensions so
that it can still be used when the requirements and the application environment
change.

2.3 Rationale for the Method

This subsection gives the reasons for choosing formal object-oriented specifica-
tion using Object-Z as the method to specify our framework. In particular, we
draw conclusions from the preceding subsection.

Specification Language Specification languages such as Z [49], Object-Z [46],
Alloy [30], VDM [31], and UML are designed for the specification of software
systems. Therefore, they are highly suitable to express the structures of software
systems such as their operations and state spaces. In particular, state-based
modeling is an important feature that is not easy to achieve with textual meth-
ods, non-modal logics, or mathematical text with formulas (e.g. state functions
and state transitions need to be introduced manually).

Specification languages provide a systematic and methodical approach for
the specification of systems and therefore help to reduce inaccuracies and errors.
Furthermore, they can usually be integrated systematically in the whole software
development process.

In our experience, reading and writing specifications in a specification lan-
guage is much faster and clearer than with textual specifications—once ac-
quainted with the language.

Finally, many specification languages offer tool support so that specifications
can be checked and analyzed (semi)-automatically [2, 41].
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Object Orientation As has been argued elsewhere [13, 48], object-orientation
turns out to be a modeling paradigm particularly suitable to produce flexible
and extensible models of complex systems. Among its key features to address
complexity there are generalization (to structure the system in an inheritance
hierarchy and to organize and share common attributes and services) and data
encapsulation (to provide information hiding, abstraction, and system decom-
position). Modularity and feature reuse contribute to achieve extensibility and
flexibility. In particular, object-orientation is also suitable for modeling the data
of a system.

Therefore, with respect to our goals we consider object-orientation to be the
appropriate basis for our framework.

Formal Method There has always been a big debate about the benefits and
drawbacks of formal methods [15]. We do not want to raise the discussion again
because this would be well beyond the scope of this report. However, we point
out the key issues why we think a formal method is the appropriate vehicle in
order to specify an access control model:

– Formal methods are precise and leave no room for ambiguities. Thereby they
can avoid misinterpretation and can protect from hidden design flaws.

– In addition, formal specifications can be subject to formal reasoning. Thereby
certain properties of the specification such as important security require-
ments can be proven formally.

We think that particularly in the area of security critical software such as an
authorization engine, the application of formal methods is appropriate at design
time. Finally, it is important to note that for the specification and administration
of policies at runtime no formal method is necessary in our approach. Hence,
administrators do not have to worry about this (cf. Section 5.2).

Object-Z We have chosen the Object-Z notation [22, 46], which is derived from
the Z notation [49], for the specification of our framework. Object-Z is a mature
specification language with a well-understood semantics that is both formal as
well as object-oriented. As a consequence, Object-Z fits the requirements stated
in Sections 2.3, 2.3 and 2.3.

Object-Z can be used to create self-contained formal specifications that are
clearly separated from the informal text. Textual descriptions or diagrams (e.g.
ER-diagrams showing the state space of a class) can still be used for illustration,
which is recommendable. The class construct of Object-Z provides the formal
structuring capabilities necessary for this. In particular, the suitability of Object-
Z for the definition of standards and reference models has been proposed [23].
Besides being a formal language, as a main reason these structuring capabilities
are given: the Object-Z class construct and the way operations can be expressed
offers the succinct specification of the various hierarchical relationships and the
communication between objects in a large and complex system, which standards
typically are [23, p.1].
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The ability of our framework to express access control concepts is limited
by the expressiveness of the chosen specification language. Object-Z is widely
accepted as a highly expressive formalism which is based on typed set theory
and first-order logic. Currently we are not aware of any access control concept
that is not expressible in Object-Z.

RBACCoreM

ExoContextM

SSDM

RoleHierarchyM

SSDRHM

ACModel1 ACModel2 ACModel3

WFCoreM

WFSepDutyMWFCardinalityM

WFBindDutyM WFPrereqStepM
DSDM DSDRHM

Fig. 1. Class Inheritance Hierarchy (UML)

Like Z, Object-Z was designed to be readable by humans which is based on
a rich syntax including common mathematical notation displayed by means of
LaTeX. We see this as one of its main advantages over other notations, particu-
larly for the definition of reference models. However, the fact that is readable by
humans rather than by computers is also a reason for one of its drawbacks: the
only tool currently available supporting the analysis of Object-Z specifications
is Wizard and the functionality of this tool is limited to type checking [3].

At the cost of human readability, this issue is addressed by the ASCII-based
Alloy language and its analyzer tool [2]. Alloy is a lightweight formal specification
language that has also a notion of object-orientation [30]. Even though one could
argue that human readability already outweighs the availability of an analyzer
tool, there is another reason why using Alloy for the definition of our framework
is not possible. Alloy does not support multiple inheritance which is one of the
key ideas behind our framework [29].

Finally, note that semantic details of Object-Z are introduced when they
are necessary for the description of the framework in Sections 4 and 5. For
convenience we added a list of used symbols as a quick reference in Appendix A.
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3 Framework

In order to solve the problems described in Sections 2.1 and 2.2, the idea of this
report is to define a framework consisting of so-called authorization modules.
Each modeled access control concept (such as separation of duty) is packed
into an authorization module (cf. Section 3.1). Afterwards, these modules can
be reused and combined with each other in order to extend the framework (cf.
Section 3.2) or to generate full access control models (cf. Section 3.3). Finally,
Section 3.4 explains on a high level how a policy data model is included in each
generated model.

3.1 Module Definition

An authorization module is introduced by means of one Object-Z class, which
is by convention of our framework a class ending with the letter “M”. Such a
class specifies an access control concept including the access decision evaluation
logic, the administrative interface, the interface to the system that raises access
requests, and the state variables for both policy information and dynamic context
information.

3.2 Framework Extension

Each time a new authorization module is introduced to the framework it can
reuse the existing modules by inheriting their features. Thereby a module can
add or change some of the functionality of another module while leaving and
just reusing the rest as it is. This is realized through class inheritance in Object-
Z. Modules independent from each other stay clearly isolated and removing or
altering one of them does not affect the other modules. Note that, as a con-
sequence, the dependences of access control concepts is clearly specified in our
framework.

Above the dotted line, Figure 1 shows our current set of authorization mod-
ules and how they depend on each other1. For example, RBACCoreM comprises
basically the core component of the RBAC standard, RoleHierarchyM adds a role
hierarchy, SSDM and DSDM add separation of duty, ExoContextM adds exoge-
nous context constraints similar to Strembeck and Neumann’s approach [37], and
WFCoreM and its submodules add workflow related concepts such as history-
based separation of duty and prerequisite steps. The formal definition of these
modules is available online [7].

There are three remarks worth mentioning. Firstly, even though the frame-
work is designed in such a way that it needs to have a root element, this does
not need to be RBACCoreM . A more general root element could be introduced,
so that access control concepts without a notion of roles can be added. Secondly,
1 Note that we visualize Object-Z class relationships by means of UML class diagrams

which only have an illustrative purpose. They are not necessary for the definition of
the framework.
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it becomes necessary to use Object-Z’s multiple inheritance for the definition of
modules. when an access control concepts depends on more than one existing
concept. As an example, consider a workflow scenario where a history-based sep-
aration of duty constraint is only applied if some context condition is true such
as an amount of a loan exceeding a certain amount in a loan origination process.

Finally, it is important to note that the choice of authorization modules is
depending on many design decisions. Thus, it is well beyond the scope of this
report to discuss the questions of which modules to use for the framework and
how these modules are designed internally.

3.3 Generating Access Control Models

An access control model can be generated by inheriting from all authorization
modules corresponding to the required access control concepts. This is real-
ized by Object-Z’s multiple inheritance allowing us to merge the state spaces
and operations of different modules and therefore to include the functionality
they provide. When selecting a module, all its parent modules are automatically
included. Below the dotted line of Figure 1, three examples of access control
models are given—namely ACModel1 to ACModel3. Note that these are not
part of the framework. Thereby the framework provides a formal way to express
recommended combinations or guidelines for combinations.

Finally, it should be noted that the generation of an access control model
differs from the extension of the framework by an authorization module in such
a way that a model does not add or alter functionality, on the one hand. On
the other hand, a generated model may set some constants occurring in the
definition of a participating module in order to provide the actual parameters
for this participating module.

3.4 Generating Policy Data Models

For each authorization module there is exactly one associated Object-Z class
which has by convention the same name except it is ending with the word “Pol-
icy” instead of “M”. The purpose of these Object-Z classes is to provide the data
model for a policy language. Hence, these policy modules define which informa-
tion is supposed to be stored within a policy for each authorization module.
The policy modules are arranged in the same class inheritance relation as the
authorization modules. When generating an access control model, the set of pol-
icy modules corresponding to the selected authorization modules generate the
appropriate policy data model.

Figure 2 illustrates this process by showing the dependency of three exem-
plary authorization modules generating an access control model and the asso-
ciated policy modules as well as the policy data model. In this way, a concrete
policy language (e.g. as an XML application) can be developed for an access
control model on the basis of the automatically delivered policy data model.
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RBACCoreM

WFCoreM

RBACCorePolicy

WFCorePolicy

SSDM

ACModel PolicyDataModel

SSDPolicy

Fig. 2. Dependancy between Authorization and Policy Modules (UML)

4 Authorization Modules

While Section 3 introduced our framework from a high level perspective, this
section provides the details by going through the features of a module step by
step.

4.1 Overview

Figures 4 and 3 show an abridged version of RBACCoreM , which is derived from
the core component of the RBAC standard. The parts cut out are displayed by
“...”. Each module definition starts by its visibility list indicated by the symbol
“�”. The visibility list is the set of operations and state space variables that can
be accessed from outside. Thereby the whole interface of a module is defined.
Note that we currently do not model any review functions.

The first box—in Z parlance called schema—contains the state space of the
module comprising the set of state variables in the part above the line and the
class invariants below the line. The class invariants are predicates that need to be
fulfilled at all time in the life cycle of a runtime instance based on this module. In
case of RBACCoreM the state variables include, for example, a set of subjects,
which represent the active entities of the system, and a policy, which contains
information such as the set of roles and the role assignment relations2. The class
invariant ensures that a user can only activate a role (on behalf of a subject) if
he or she is assigned to it.

In the remainder all operations of the module (whether publicly visible or
invisible) are defined. An operation can be defined in two ways: either by means

2 Policies are introduced in Sect. 5.
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of a schema as in the case of ImportPolicy or by means of the schema calculus
as in the case of CheckAccess:

– In the former case, an operation schema contains the communication vari-
ables of the operations in the part above the line and the pre- and post-
conditions for the operation in the part below the line. The communication
variables are decorated either with “?” to indicate an input variable or with
“!” to indicate an output variable. The state of the variables in the ∆-list
is supposed to be changed by the operation. By the variable decoration “′”
one can refer to the state of a variable after the change.

– In the latter case, existing operations can be promoted by using the operation
composition operators of the Object-Z schema calculus. This is an elegant
way to reuse and modify features from parent modules.

The visible operations of an authorization module such as CheckAccess are
typically the ones that are invoked by the system component that raises the
access requests such as a policy enforcement point. Administrative operations
that are used, for example, to add a user are defined within the policy modules
(cf. Sect. 5).

All in all, an authorization module can be conceived as a set of authorization
constraints (predicates: class invariants, post-, and pre-conditions) posed on state
variables and operations in order to model a certain access control concept.

Note that the state variables and the operations of a module constitute the
features of a module.

Request

s : SUBJECT

op : OPERATION

ob : OBJECT

Fig. 3. Basic Request (Object-Z)

4.2 Data Encapsulation

For the internal specification of a module, data encapsulation is a powerful means
to handle complexity as well as to provide flexibility. In Object-Z this is realized
with types: all declared variables in Object-Z need to be assigned a type. E.g.

U : P USER

declares that the variable U has the type power set of USER (i.e. U is an
element of P USER, hence, U is a set of elements of the type USER). Types
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RBACCoreM

�(ImportPolicy ,ExportPolicy ,CheckAccess,

CreateSubject ,DestroySubject ,ActivateRole,

DeactivateRole)

Policy : ↓RBACCorePolicy©C
S : P SUBJECT

SR : S ↔ Policy .R

SU : S → Policy .U

Policy ∈ ↓RBACCorePolicy

∀ s : S • SR(| {s} |) ⊆ Policy .UA(| {SU (s)} |)

ImportPolicy

∆(Policy)

Policy? : ↓RBACCorePolicy

Policy? ∈ ↓RBACCorePolicy

Policy ′ = Policy?

...

Grant

d ! : DECISION

d ! = grant

Deny

d ! : DECISION

d ! = deny

Authorization

req? : ↓Request

∃ r : ROLE ; p : PERMISSION •
(req?.s, r) ∈ SR ∧
(r , p) ∈ Policy .PA ∧
(req?.op, req?.ob) = p

CheckAccess =̂ (Grant ∧Authorization)∨
(Deny ∧¬Authorization)

...

Fig. 4. RBAC Core Module (Object-Z)

can be constructed on top of so-called basic types or object types by using type
constructors such as “P” (power set) and “×” (cartesian product).

– Basic type: a basic type is just defined by introducing the name of the type
such as

[USER]
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Thereby all the details of the type are up to the interpretation of the imple-
mentation. In the case of USER, the elements of this type can be interpreted
as identifiers to the digital representation of human users of the system, as
they are provided by, for example, a directory service. Hence, USER can be
conceived as a namespace for system users.
It is also possible to introduce basic types by listing all its values such as for
the possible access decisions:

DECISION ::= grant | deny

– Object type: in contrast to basic types, an object type models (and partic-
ularly hides) all the details about the type. This information can then be
used by the access decision logic in order to make access decisions depend
on it. For example, Figure 5 shows our model of a workflow management
system (WFMS) as it is seen by the access control system. This WFMS is
made available to the access control model in the WFCoreM module by just
introducing a state variable of the type WFMS

wfms : WFMS

Thereby all the information internal to the WFMS is hidden behind one
variable, achieving a clear separation between the authorization engine and
the WFMS in terms of the modeling. In order to model history-based separa-
tion of duty, for example, our WFSepDutyM can access the history through
wfms.HistoryWFI [7].
Through this principle of information hiding, object types are a way to cope
with the complexity of multiple access control concepts and with the variety
of information these concepts deal with.

Furthermore, for the extension of our framework by further modules as well
as for the restructuring of an existing module internally, this type system makes
an important contribution for the flexibility of the framework.

For example, in order to implement obligations in the sense of XACML, the
basic type DECISION could be replaced by an appropriate object type incorpo-
rating obligations. Afterwards, a module ObligationM could be added assigning
obligations to permissions and extending the Grant and Deny operations ac-
cordingly.

Another example is to extend existing object types such as WFMS by means
of inheritance in order to include further information such as the business logic
of processes. A submodule WFBusinessLogicM could then extend WFCoreM in
order to enforce order of events by relying on the extended version of WFMS .
Note that currently our workflow modules only enforce security requirements
such as history-based separation of duty.

4.3 Inheritance

The framework can be extended with a further access control concept by adding
an authorization module that models this concept. This is realized by Object-Z’s
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WFMS

wftemplates : P WFTEMPLATE

tasks : P TASK

wfinstances : P WFINSTANCE

taskinstances : P TASKINSTANCE

instanceofwf : wfinstances → wftemplates

instanceoftask : taskinstances → tasks

belongstoinst : taskinstances → wfinstances

belongstotmpl : tasks → wftemplates

HistoryWFI :

seq(WFINSTANCE ×USER × TASK )

instanceofwf ◦ belongstoinst

= belongstotmpl ◦ instanceoftask
∀(wfi , u, t) : WFINSTANCE ×USER × TASK |
〈(wfi , u, t)〉 inHistoryWFI •

belongstotmpl(t) = instanceofwf (wfi)

Fig. 5. A Workflow Management System Model (Object-Z)

elaborated class inheritance capabilities and thus an added authorization module
can reuse the features of one or more existing modules in a fine-grained manner.
Figures 7 and 6 show the WFCoreM module introducing our core module for
workflow related constraints as a submodule of RBACCoreM . This module adds
an additional authorization at task layer (via ClaimTI ) and ensures that requests
at object layer (via CheckAccess) are in line with the task layer. Within our
framework we make use of the following three cases to inherit a feature of a
module (recall the definition of feature in Section 4.1):

RequestWF

Request

ti : TASKINSTANCE

Fig. 6. Workflow Requests (Object-Z)
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WFCoreM

�(ImportPolicy ,ExportPolicy ,CheckAccess,

CreateSubject ,DestroySubject ,ClaimTI ,

ReleaseTI ,ActivateRole,DeactivateRole)

RBACCoreM

claimedby : TASKINSTANCES 7→ S

Policy ∈ ↓WFCorePolicy

dom claimedby ⊆ wfms.taskinstances

ImportPolicy

Policy? ∈ ↓WFCorePolicy

...

ClaimTI

∆(claimedby)

s? : SUBJECT

ti? : TASKINSTANCE

claimedby ′ = claimedby ∪ {ti? 7→ s?}
∃ r : ROLE | (s?, r) ∈ SR •

(Policy .wfms.instanceoftask (ti?), r) ∈
Policy .TRA

...

Authorization

req? : ↓Request

req? ∈ RequestWF

req?.ti claimedby req?.s

(req?.op, req?.ob) ∈
Policy .TPA(|
{Policy .wfms.instanceoftask (req?.ti)}

|)

Fig. 7. Workflow Authorization Core (Object-Z)

1. Simple reuse: if the submodule does not specify anything about a feature,
it is reused as it is. For example, the DeactivateRole operation or the state
variable S is reused by WFCoreM as it is.

2. Merge: if an operation with the same name and same type signature is de-
fined, the predicates of this operation stated by the submodule are implicitly
conjoined (i.e. added with logical “and”) with the predicates defined (and
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thus inherited) in the parent module. An example is the ImportPolicy op-
eration of WFCoreM . In case of Authorization two further constraints are
added to the operation originally defined in RBACCoreM .
The actual state space of a submodule is the union set of the (inherited)
state variables of the parent module and the set of state variables defined
explicitly in the submodule. Hence, the set of state variables of the par-
ent module is implicitly contained in the state space of the submodule. All
class invariants (inherited from parent module or explicitly stated in sub-
module) are conjoined. In the case of WFCoreM , the function claimedby is
added which tracks the task instances claimed by (i.e. assigned to) a subject.
A corresponding class invariant is added ensuring that only task instances
known to the WFMS are claimed.

3. Cancel and redefine: a submodule can also cancel a feature of a parent module
in order to redefine it with a whole new semantics. We use this principle, for
example, to introduce role hierarchies [7].

Thus, by means of inheritance, further constraints (predicates: class invari-
ants, pre- and post-conditions) can be posed on the existing state variables and
operations of a module. Also, new constrained state variables and operations can
be introduced as well as existing constraints can be canceled.

4.4 Module Combination

The combination or selection of modules for the definition of an access control
model is a special case of inheritance. By using multiple inheritance, all desired
modules can be included while merging their constraints and state variables ac-
cording to the Object-Z inheritance semantics as described in Section 4.3: state
variables are merged, predicates are conjoined. Thus, all the constraints are col-
lected and placed automatically to the right places. Note that commonly known
issues of multiple inheritance due to name clashes or inheritance of unneces-
sary attributes, are problematic in object-oriented programming rather than in
object-oriented modeling [48].

Figure 8 shows an example of a model including static separation of duty,
exogenous context constraints, and the prerequisite step principle for workflows.
The cut out visibility list needs to be stated explicitly. It is the union set of all
visibility lists of the participating authorization modules and defines the interface
to whole the access control model. ExportPolicy has been cut out as well.

Now, ACModel2 can be used as a software model integrated in the develop-
ment process of an appropriate authorization engine.

5 Policy Representation

5.1 Policy Modules

As described in Section 3.4 on a high level, authorization modules are asso-
ciated with policy modules in such a way that each authorization module in-
stantiates its corresponding policy module. Operations to import and export
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ACModel2

�(...)

SSDM

ExoContextM

WFPrereqStepM

ImportPolicy

Policy? : ↓RBACCorePolicy

Policy? ∈ PolicyDataModel2

...

Fig. 8. Access Control Model 2 (Object-Z)

instances of policy modules are available in each authorization module. Fig-
ure 9 shows the policy module RBACCorePolicy and WFCorePolicy which cor-
respond to RBACCoreM and WFCoreM , respectively. They contain everything
that is supposed to be included in a persistent policy for RBACCoreM and
WFCoreM—namely users, roles, permissions, user role assignment, and permis-
sion role assignment for RBACCoreM , and task permission assignment, task
role assignment, and a link to the WFMS for WFCoreM . In contrast, subjects
and their activation relations, for example, are not supposed to be part of a
policy. Policy modules also define administrative operations such as for adding
and deleting users, which are usually invoked by a policy administration point.
These have been cut out here. The class invariants of the policy modules de-
fine administrative constraints ensuring that static requirements of the policy
are not violated during the policy administration process. An example is static
separation of duty, where the policy module ensures that no user is assigned to
two critical roles.

ImportPolicy and ExportPolicy operations are responsible for loading and ex-
porting policy information in an authorization module. Figures 4 and 7 show the
specification of ImportPolicy (ExportPolicy is analogous). The communication
interface of ImportPolicy makes use of polymorphism in order to have the same
type signature throughout the whole inheritance hierarchy (i.e. signature com-
patibility). As shown in Figure 7, each authorization module adds a constraint
to ImportPolicy (here Policy? ∈ ↓WFCorePolicy) in such a way that the loaded
policy needs to be an instance of the appropriate corresponding policy module
(or one of its submodules). Thereby, it is always ensured that an imported or
exported policy module instance has the data format appropriate for an autho-
rization module. I.e. at least the information needed by the authorization module
is included in the loaded policy.
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RBACCorePolicy

U : P USER

R : P ROLE

P : P PERMISSION

UA : U ↔ R

PA : R ↔ P

...

WFCorePolicy

RBACCorePolicy

wfms : WFMS

TPA : TASK ↔ P

TRA : TASK ↔ R

domTPA ⊆ wfms.tasks

domTRA ⊆ wfms.tasks

∀(t , r) : TRA • TPA(| {t} |) ⊆ PA(| {r} |)

...

Fig. 9. RBAC and Workflow Core Policy Modules (Object-Z)

PolicyDataModel2

SSDPolicy

ExoContextPolicy

WFPrereqStepPolicy

Fig. 10. Policy Data Model 2 (Object-Z)

5.2 Policy Data Model

The generation of a policy data model corresponding to an access control model
is analogous to the generation of an access control model. It makes use of multiple
inheritance so that the appropriate data models from all the necessary policy
modules are included. I.e. state variables are merged and class invariants (if any)
are conjoined.

Figure 10 shows PolicyDataModel2 which is the policy data model corre-
sponding to ACModel2. Hence, instances of this policy data model Object-Z
class are the policies (at modeling level) of the access control model ACModel2.

18



For an authorization engine implementing ACModel2 it would be necessary to
define a concrete policy representation format, for example, as an XML applica-
tion (as in ORKA [1]) or by means of data definition language such as SQL. Also
graphical representations that are particularly suitable for policy administration
are possible. The formal semantics of the policies is elegantly defined through
ACModel2 in any case.

By using an ad-hoc concrete syntax for PolicyDataModel2 (i.e. names imply
the relationship to the data model), an example policy for ACModel2 could be
stated as follows. Imagine a scenario with the following users, roles, permissions,
user assignments, and permission assignments:

users A, B, C;

roles clerk, supervisor, manager;

permissions readdoc, writedoc, signdoc,
createdoc, syscleanup;

A user-assigned-to manager;
B user-assigned-to clerk;
C user-assigned-to supervisor;

clerk assigned-to-permission createdoc;
clerk assigned-to-permission readdoc;
clerk assigned-to-permission writedoc;
manager assigned-to-permission signdoc;
manager assigned-to-permission readdoc;
supervisor assigned-to-permission syscleanup;
supervisor assigned-to-permission readdoc;

Two static separation of duty constraints are placed. The “1” indicates that at
most one role may be assigned to a user.

critical-roleset(1) { supervisor , clerk } ;
critical-roleset(1) { supervisor , manager } ;

Roles are assigned to the tasks apply, check, review, and approve. Afterwards,
the tasks are assigned to permissions appropriately. A special prerequisite condi-
tion enforces that the task review must be completed before approve can take
place:

wfms wfms.mydomain.org;

apply task-assigned-to-role clerk;
check task-assigned-to-role clerk;
review task-assigned-to-role supervisor;
approve task-assigned-to-role manager;
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apply task-assigned-to-perm createdoc;
check task-assigned-to-perm readdoc;
check task-assigned-to-perm writedoc;
review task-assigned-to-perm readdoc;
approve task-assigned-to-perm readdoc;
approve task-assigned-to-perm signdoc;

review must-be-completed-before approve;

Finally, a context constraint is placed in such a way that system cleanup can
only happen on Saturdays:

cc1 { timesrv.mydomain.org , DayEquals,
"Saturday" };

syscleanup permission-assigned-to-cc cc1;

Here, cc1 is the identifier for the context constraint.

6 Reasoning About the Specification

In this section we demonstrate by example how we can benefit from the rea-
soning techniques available for the Object-Z specification language. The style
in which we present the proofs has been used successfully elsewhere [16]. We
think that such hand-made proofs are easy to read and understand and that
they are appropriate to proof typical system requirements and properties. By
using a logic with inference rules such as ZC [26] and W [45], the proofs can be
adapted to be checked by a theorem prover. As a future work, we may consider
this direction.

6.1 Verifying Properties

A class invariant specifies explicitly a property of a class that must hold all the
time. The class invariants are chosen in such a way that they best clarify the
functionality and intent of the class [22, p.95]. Therefore it may be desirable to
leave out class invariants that follow from other class invariants, type definitions,
or operation definitions. However, these so-called derived invariants may con-
tain a valuable insight into the specification from a certain perspective (such as
important high-level security requirements) so that one may want to state them
separately and then to prove that they indeed follow from the specification.

For example, in the version of role-based access control published in 1992 [24]
there was a rule called role assignment rule stated as follows “a subject can
execute a transaction only if the subject has selected or been assigned to a role”.
This rule has been silently dropped in later versions of RBAC. We show that this
rule is indeed redundant, i.e. that it is a derived invariant of the specification.
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Proposition 1. For any s : S and (op, ob) : Policy .P within the scope of
RBACCoreM such that

Authorization[s/req?.s, op/req?.op, ob/req?.ob]

it follows that

SR(| {s} |) 6= ∅

Proof: Assume that there exist s : S and (op, ob) : Policy .P such that

Authorization[s/req?.s, op/req?.op, ob/req?.ob]

but also SR(| {s} |) = ∅. However, from

Authorization[s/req?.s, op/req?.op, ob/req?.ob]

it follows that there exists r : R such that (s, r) ∈ SR which yields a contradic-
tion. 2

Another example is a requirement for workflows that is implicitly fulfilled by
our specification (cf. Fig. 7 and 9). It can be stated as follows.

Proposition 2. A subject who claimed a task instance has sufficient permis-
sions in order to execute all operations associated (over Policy .TPA) with the
corresponding task.

Proof: Let s : S and ti : TASKINSTANCE such that ti claimedby s. Let the
corresponding task be task : TASK | task = Policy .wfms.instanceoftask (ti). We
need to show that s has the authorization to perform any permission (op, ob) =
p : PERMISSION that is assigned to task , i.e. (task , p) ∈ Policy .TPA. Hence,
we need to show

Authorization[s/req?.s, op/req?.op, ob/req?.ob]

The only way to claim a taskinstance (see ∆-list) is by means of ClaimTI .
Therefore, we have

ClaimTI [s/s?, ti/ti?]

from which we can follow that there exists a role r : ROLE that has been
activated by s, i.e. (s, r) ∈ SR, and that is assigned to task , i.e. (task , r) ∈
Policy .TRA. The class invariant of WFCoreM ensures that for every such as-
signment (task , r) ∈ Policy .TRA it holds that if (task , p) ∈ Policy .TPA then
(r , p) ∈ PA. Hence, we have (s, r) ∈ SR and (r , p) ∈ PA which concludes the
proof. 2
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6.2 Consistency Analysis

An important requirement is the consistency of an access control model gener-
ated by the framework.

Definition 1 (Consistency). An access control model is called consistent if
there exists a state fulfilling all class invariants.

As a consequence, such a model does not have any contradictory constraints.
This is usually achieved by showing the initialization theorem for the class con-
stituting the access control model, i.e. showing that an initial state exists [52].
Hence, if State : Exp denotes the state schema of a class such as ACModel2 and
StateInit its initial state, we need to show that

∃State ′ • StateInit

Since we have currently no initial states defined in our framework, we need
to defer an explicit example for future work. As Woodcock and Davies point
out [52], an initialization theorem can usually be proven by eliminating the
quantified variables, since the initial state is most often defined with a number
of equations.

6.3 Argue about Design Decisions

Another application of formal proofs is to find arguments for design decisions. If
a solution is chosen, the reason might be that another solution will entail some
undesirable consequence. Hence, a good argument for the decision is to provide
a proof for this implication.

For example, we chose

∀(t , r) : TRA • TPA(| {t} |) ⊆ PA(| {r} |)

as a class invariant of WFCorePolicy instead of

∀(t , r) : TRA • TPA(| {t} |) = PA(| {r} |)

because of the following undesirable consequence:

Proposition 3. If

∀(t , r) : TRA • TPA(| {t} |) = PA(| {r} |)

then one role : ROLE cannot be assigned to two tasks t1, t2 : TASK with different
assigned permissions (over TPA).

Proof: Let p : PERMISSION be w.l.o.g. such that (t1, p) ∈ TPA but (t2, p) 6∈
TPA. Assume that (t1, role) ∈ TRA and (t2, role) ∈ TRA. By using (t1, p) ∈
TPA and (t1, role) ∈ TRA as well as the proposed formula we get

p ∈ PA(| {role} |)

By using (t2, role) ∈ TRA together with the proposed formula we get

PA(| {role} |) = TPA(| {t2} |)

Hence, p ∈ TPA(| {t2} |), i.e. (t2, p) ∈ TPA, which yields a contradiction. 2
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7 Related Work

A methodical approach by Ahn and Hu [6] is based on model driven develop-
ment of RBAC models specified in UML/OCL. While the focus of our approach is
mainly on modeling and analysis, Ahn and Hu additionally take into account me-
thodical translation to enforcement code. The approach is also object-oriented,
however, no particular extensibility issues or issues dealing with combination of
RBAC extensions are addressed. While our approach to validation is proof-based,
Ahn and Hu’s model-based approach can only address consistency questions3.

Schaad and Moffett’s approach [44] based on the Alloy lightweight specifi-
cation language and the Alloy analyzer tool deals with the specification, inte-
gration, and analysis of two RBAC extensions—namely separation of duty and
the administrative model ARBAC97 [42]. A major benefit here is that models
and specifications can be analyzed automatically with the Alloy analyzer to find
contradictory constraints and thus to strengthen the specification (i.e. model-
based consistency analysis). In contrast to our approach, Schaad and Moffett’s
approach does not attempt to be open for further RBAC extensions. As pointed
out in Section 2.3, we see the lack of human readability of Alloy as a drawback
with respect to our goals.

In their classical paper, Gligor, Gavrila, and Ferraiolo present a formal spec-
ification and composition framework focusing on a variety of separation of duty
constraints [25]. They state and prove properties on the relationship of these
constraints and on the way they can be composed. The types of separation of
duty constraints identified in this work can be used as a starting point for an
appropriate set of authorization modules. No specification language is used to
defined the framework so that, for example, states need to be handled manually
(cf. Section 2.3).

One of the few approaches concentrating on proof-based formal verification of
access control models is by Drouineaud, Sohr, et al. [21, 47]. They use the Isabelle
theorem prover and a specification in a first-order linear temporal logic. Their
main advantage compared to our approach is the application of semi-automatic
theorem proving. However, their specifications are lengthy and very difficult to
understand. In particular, they do not benefit from having an object-oriented
specification language.

The RBAC96 family of models [43], where the ANSI RBAC standard [5]
is based on, integrates roles, role-hierarchy, and two variants of separation of
duty. Furthermore, the secure role-based workflow models framework [33] merges
the RBAC96 concepts with with workflow-related constraints including order of
events, execution cardinality restriction, and workflow-based separation of duty.
The ANSI standard provides the notion of “functional specification packages”
that describe informally how the RBAC components may be combined with
each other. From a conceptual point of view these approaches are well thought-
out. However, as argued in Section 2, in our view their main drawback is that

3 The distinction between model-based and proof-based verification is defined by Huth
and Ryan [28, p.172].
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they are not based on a specification method suitable to handle the complexity
and to provide the extensibility necessary for an integration of multiple access
control concepts. Further integration of concepts based on the method used will
be cumbersome and error-prone.

A further important advantage of our approach to many RBAC models and
extensions [43, 37, 33, 25] is that it clearly separates static policy data (which
are supposed to be stored in a policy) from the dynamic data such as session
data or role activations. Thereby the definition of a policy language is directly
supported.

Finally, compared to other high-level access control modeling approaches [32,
9, 38, 43, 33, 11], our authorization modules are one step closer to implementation
because they are specified with a dedicated software specification method (cf.
Sect. 2.3). For example, the modeling of state transitions can be cumbersome
without such a method. Therefore our approach bridges the gap between high-
level access control modeling and authorization engine software design.

8 Future Work

Basically, there are three directions for future work: modeling, validation, and
implementation.

Firstly, concerning the modeling of access control principles, we strive for the
definition of further authorization modules in order to include, for example, obli-
gation, delegation of rights, and further workflow concepts. An additional goal
is is to elaborate the innovative aspects we have encountered during the specifi-
cation of the framework. Also, it may be interesting to see how administrative
models can be adapted by the framework. Furthermore, an additional concept
that is somewhat orthogonal to all the other concepts mentioned in this report is
heterogeneous multi-domain access control. This concept cannot be realized by
just adding a further authorization module because more than one authorization
engine is involved (e.g. one engine per domain). Instead, a model needs to be
built that handles multiple authorization engines which are instances of possibly
different access control models. From a high-level perspective, Figure 11 shows
how we can realize this in our framework: all participating instances of access
control models (i.e. authorization engines at modeling view) need to be aggre-
gated by one multi-domain model specifying how these instances cooperate. In
addition, a multi-domain authorization module needs to be introduced to each
access control model in order to specify the cooperation internally (such as the
handling of external requests).

Secondly, concerning the validation, we strive for an analysis of how we can
benefit from existing solutions to automated theorem proving (e.g. based on
Isabelle [4]).

Finally, concerning the implementation of an authorization engine according
to our generated access control models, we strive for the examination of model-
driven development approaches, Object-Z translation techniques and tools [40,
50, 39], as well as approaches based on the Object-Z refinement calculus [52, 20].
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Thereby we would strengthen the integration of our framework in the software
development process.

ACModel1 ACModel2 ACModel3

MultidomainModel

*

1

*

1

*

1

Fig. 11. Multi-Domain Extension (UML)

9 Summary and Conclusions

In this report we presented a framework that builds a foundation for the spec-
ification of various RBAC extensions and their integration with each other. In
particular, we have already included a role hierarchy, separation of duty, con-
text constraints, and several workflow-related constraints such as history-based
separation of duty and prerequisite steps. We have also shown how to deliver
policy data models accordingly. Furthermore, it is explained why formal, object-
oriented specification in Object-Z is the right vehicle to make the framework
extensible, flexible, precise, and capable of handling complexity. We have also
demonstrated how these properties are realized in the framework. Finally, we
have shown how the specification can benefit from a formal analysis.

As a consequence, we believe that the work of this report can serve as a basis
for a unified RBAC reference model bringing the concepts from existing RBAC
extensions together. In addition, the framework can be used to articulate new
concepts concisely and rapidly without the need of textual descriptions and to
analyze these concepts formally. This helps to avoid a faulty design from the
beginning on. Finally, since the models of our framework are expressed with
a dedicated software specification language, they are highly suitable as a soft-
ware model for an authorization engine, its communication interface, and its
relationships with other components such as a context provider or a workflow
management system.
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A Used Object-Z Notation

x : T declaration of x as type T
x : seqT x is a sequence of elements of type T
∧ logical connective “and”
∨ logical connective “or”
⇒ logical connective “implies”
¬ logical unary connective “not”
∈ set membership
∪ set union
∩ set intersection
⊆ subset
∀ x : T • P for all x of type T , P holds
∃ x : T • P exists x of type T such that P holds
P power set
� visibility list of a class
∆ indicates the variables changed by an operation
R(| S |) relational image of a relation R under a set S
B boolean type
↓ polymorphic type
? indicates input variable
! indicates output variable
′ the state of a variable after an operation
=̂ operation definition with schema calculus
〈〉 defines a sequence
in checks subsequence relationship
→ total function
7→ partial function
↔ relation
◦ backward relational composition
R−1 relational inverse
R∗ reflexive, transitive closure
× cartesian product
©C object containment
∅ empty set
R infix notation for a relation R
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