
Temporal Patterns for Document
Verification

Mirjana Jakšić and Burkhard Freitag

Department of Informatics and Mathematics, University of Passau
{Mirjana.Jaksic, Burkhard.Freitag}@uni-passau.de

Technical Report, Number MIP-0805
Department of Informatics and Mathematics

University of Passau, Germany
November 2008

Abstract

Digital text, in particular hypertext, can be represented as a tem-
poral structure based on the concept of narrative paths. Using compu-
tation tree logic (CTL) as a formal basis, consistency constraints about
the document can then be expressed as temporal properties. These in
turn can be verified against the document model by model checking.

Unfortunately, the average user can not be assumed to be famil-
iar with temporal logics. Therefore, as an approach to fill the gap
between formality and usability, we present a novel user-friendly high-
level approach to the specification of temporal properties supporting
an incremental construction of commonly used consistency criteria for
web documents.

1 Introduction

The concept of consistency is commonly applied to databases, programs,
protocols, concurrent processes, and systems but can be naturally extended
to digital documents. Various notions of consistency and a wide range of
consistency checking methods have been studied in the field of digital doc-
uments.
In this report we address the problem of specifying consistency criteria for
the purpose of verification of web documents. We focus on temporal prop-
erties of documents along standard reading paths. For example, we check
whether in a web-based training (WBT) document every description of a
certain concept is followed by an example of the same concept. This kind
of consistency is particularly useful when having to ensure the document
coherence and certain properties of the narrative flow, e.g. in e-learning or
technical documentation.
The verification is performed by model-checking based on computation tree
logic - CTL [4, 6]. Temporal logics are usually used for verification tasks in
the application field of software engineering but there are also systems using
temporal logic for hypertext verification [11, 12].
Applying a temporal logic such as CTL requires good mathematical knowl-
edge and a lot of experience and usually involves considerable effort in terms
of manpower and time. For this reason, a high-level mechanism supporting
the process of formal specification is highly desirable. Our goal is to pro-
vide a user-friendly high-level specification scheme for temporal properties,
which supports the incremental construction of commonly used consistency
criteria for web documents.
Among the existing methods for high-level specification, pattern-based ap-
proaches are well established and widely used [3, 5, 9]. In many cases they
do not require deep-level knowledge of the underlying specification formal-
ism. We will show that specification patterns which originally have been
introduced for the field of reactive systems [3] can be adapted and enhanced

1

for the purpose of specifying consistency properties of documents. Further-
more, we define an appropriate mapping of patterns onto CTL formulae. We
also show that the construction of commonly used consistency conditions for
web documents can be performed incrementally thus giving less experienced
users the opportunity to proceed from low to higher complexity.
The contribution of this paper consists of:

• defining a set of specification patterns representing general temporal
constraints that can be applied to express document consistency,

• showing how the proposed specification patterns can be used in the
process of formalizing consistency criteria for web documents.

The paper is organized as follows. Section 2 describes the problem -
addressed. Section 3 gives a brief introduction to computation tree logic and
the temporal model of a web document. Section 4 introduces specification
patterns for documents, section 5 deals with pattern transformation into
CTL, while our specification tool is introduced in section 6. We conclude
with a short summary (section 7).

2 Problem Description

Our aim is to check the consistency of the narrative structure of a document.
We define the narrative structure of a document as a representation of the
sensible orders of visiting, i.e., reading its fragments in standard situations
(cf. [13]). The narrative structure of a web document is typically branching
and not linear.
When browsing a document, the user, of course, does not have to follow
its narrative structure, but in case she does, the presented content should
make sense. Hence, the consistency criteria refer to all or some of the ”rec-
ommended ways” of reading the document along its narrative structure.
These ”recommended ways” of reading the document are referred to as its
narrative paths (see [12, 13]).
The narrative structure of a document is represented by a directed graph of
narrative units (vertices) and narrative relations (edges).

Example 1 (Narrative structure)
Figure 1 depicts a fragment of a narrative structure of a web document taken
from a web based training (WBT) about datastructures. In addition to the
”main track” about datastructures, this fragment contains also an ex-course
about abstract datatypes for advanced students.
The unit start is followed by the definition of datastructure. After this
unit there are two possible branches to follow. The first one proceeds with
an example of datastructure, then with a summary and a test about data-
structure, and finally with the end unit. The other branch continues with

2

a definition of abstract datatypes, then subsequently with an example of
abstract datatypes, afterwards with the summary and a test about data-
structure, and finally with the end unit.

start

definition of

“datastructure“

example of

“datastructure“

definition of

“abstract datatype“

summary of

“datastructure“

end

example of

“abstract datatype“

test about

“datastructure“

Figure 1: Narrative structure of a document

Let us consider the following sample consistency criteria:

1. On all paths there exists a summary unit before the test unit.

2. Every definition of the topic datastructure is on all succeeding paths
followed by an example of the same topic.

3. After the summary unit, no definition units are allowed.

Obviously, criterion 1 holds in the structure of Figure 1. On both paths a
summary unit exists immediately before the test unit.
On the other hand, criterion 2 does not hold in the given structure, be-
cause there is a path (start, definition of datastructure, definition of ab-
stract datatypes, example of abstract datatypes, summary of datastructure,
test about datastructure, end) with a definition of datastructure not being
followed by an example of datastructure.
Finally, criterion 3 holds in the given structure, because both definitions
(definition of datastructure, definition of abstract datatype) appear before
the summary unit, concerning both possible paths. ¤

There are several possible ways to verify the consistency of web documents.
XML documents can be verified using e.g. DTD, XSchema, or XPath-based

3

languages. In contrast to the narrative structure of web documents intro-
duced above, which typically represents many sensible ways of reading, the
XML data model assumes a linear order of document elements. Moreover,
it can be shown that the representation of consistency criteria by means of
a temporal logic is more compact as compared to a XML-based language
(see e.g. [2]). Note also, that using a temporal logic is more general because
the document format is not required to be XML.
Of course, temporal consistency criteria could be expressed using first order
logic, too. However, [10] demonstrates that the representation of temporal
conditions in first order logic leads to very complex expressions that are, in
general, expensive to evaluate.
As compared to XML-based approaches and first order logic, temporal logic
has several advantages, among them a compact representation of consistency
criteria and a set of efficient verification procedures. In this paper, we use
the temporal logic CTL to express consistency criteria affecting narrative
paths.
The main steps of consistency specification and verification are depicted in
Figure 2. Users appear in two different roles: First, there are document
authors, who provide, organize, and maintain document fragments. Expe-
rienced authors may also be able to specify consistency criteria using the
interface for pattern-based specification to be described later in this paper.
Second, there are temporal logic experts who can specify complex criteria
directly in CTL and maintain the verification model, if necessary.

temporal

verification model

CTL

specification

pattern-based

specification

information

extraction and

integration

transformation
model -checking

error

report

document -

fragments

3 2

1

4

5

users

Figure 2: Automated verification of semi-structured documents

Assume that there are several text components, possibly in different for-
mats (no. 1 in Figure 2). The information about the document’s content
and structure are available in the form of markup and external metadata
or are provided by external information extraction tools. The collected in-
formation is represented by a temporal verification model (no. 2 in Figure
2) (see section 3) which essentially formalizes the narrative structure of the

4

document. This way an abstraction is provided from implementation details
which are irrelevant for the verification tasks.
The specification criteria are expressed in CTL (no. 3 in Figure 2) and
verified against the verification model by the CTL model checker. The
verification results (counterexamples) are then presented to the user (no. 4
in Figure 2).
As a temporal logic, CTL is likely to be too demanding for non-expert users
- which of course tend to be the majority - a user-level specification method
based on specification patterns has been developed (no. 5 in Figure 2).
Patterns represent commonly occurring requirements concerning the content
and structure of documents (see Definition 10). Specification patterns are
translated into CTL formulae.
Our approach to automated verification of semi-structured documentss is in
detail presented in [14].

3 Computation Tree Logic

CTL [6] is a propositional, branching time, future tense temporal logic eval-
uated w.r.t. discrete points in time, so called states. CTL allows to dis-
tinguish properties, which hold on some path, from those that hold on all
paths within a given structure. This property is useful for verification of
non-linearly structured documents.
CTL defines a language over a countable set AP of application dependent
atomic propositions and a finite, fixed set of connectives. Atomic propo-
sitions represent atomic statements, which can be either true or false at a
given point in time. The set of connectives is defined by the syntax of CTL.

Definition 2 (CTL Syntax)
The set of CTL formulae is the minimal set of expressions, which are gen-
erated by the following grammar rule where a is a member of the set AP of
application dependent atomic propositions:

p, q −→ > | ⊥ | a | ¬p | p ∧ q | p ∨ q | p → q |
AX p | EX p | AF p | EF p | AG p | EG p | A[p U q] | E[p U q]

Each CTL temporal connective is a pair of symbols. The first part of the
pair is a path quantifier - either A(all paths), or E(some path). The second
one is a temporal operator : X(next p), F(eventually p), G(globally p), or U(p
until q). ¤

Some examples of CTL formulae are:

1. On some path eventually a test occurs.

EF test

5

2. On all paths there is eventually a summary.

AF summary

3. Start and end cannot hold at the same time.

AG ¬(start ∧ end)

4. At any time, help is reachable within one step.

AG EX help

5. Whenever the user submits some data, it is confirmed in some next
step.

AG (submit → EX confirm)

In these sample formulae, the expressions test, summary, start, end, help,
submit, confirm are propositional formulae expressing the property of being
a test unit or summary unit and so on. CTL formulae are interpreted w.r.t.
labelled state transition systems, i.e. CTL temporal structures, as defined
below.

Definition 3 (CTL temporal structure)
A CTL temporal structure M is defined as a state transition system M =
(S, R,L) where:

• S is a nonempty set of states,

• R ⊆ S × S is a left-total binary transition relation,

• L : S 7→ P(AP) is a labelling of states such that L(s) is the set of
atomic propositions that hold at state s ∈ S.

¤

CTL temporal structures model processes in terms of states and state tran-
sitions. Properties of states are represented by sets of atomic propositions
a, which are true at a given state.

Example 4 (Temporal structure of a document)
The temporal structure M = (S, R, L) corresponding to the document,
whose narrative structure is presented in Example 1 (Figure 1), is defined
by

6

S = {s0, s1, s2, s3, s4, s5, s6, s7}
R = {(s0, s1), (s1, s2), (s1, s3),

(s2, s5), (s3, s4), (s4, s5), (s5, s6), (s6, s7), (s7, s7)}
L = {s0 7→ {start}, s1 7→ {definition, datastructure},

s2 7→ {example, datastructure},
s3 7→ {definition, abstract datatype},
s4 7→ {example, abstract datatype},
s5 7→ {summary, datastructure},
s6 7→ {test, datastructure}, s7 7→ {end}}

¤

s0 {start}

s1
{definition,
datastructure}

s2
{example,

datastructure}

s5
{summary,

datastructure}

s3

{definition,

abstract_datatype}

s4

{example,

abstract_datatype}

s7 {end}

s6
{test,

datastructure}

Figure 3: Temporal structure of a document

In the structure shown in Figure 3 one can distinguish two different paths,
namely s0 ½ s1 ½ s2 ½ s5 ½ s6 ½ s7 ½ ... (short for: {(s0, s1), (s1, s2),
(s2, s5), (s5, s6), (s6, s7), (s7, s7)}) and s0 → s1 → s3 ½ s4 ½ s5 ½ s6 ½
s7 ½

Definition 5 (CTL Semantics)
Let M = (S, R,L) be a temporal structure, and s0 ∈ S a state. Let a ∈ AP
be an atomic proposition and p, q CTL formulae.
The semantics of CTL defines when a CTL formula p is true in a structure
M = (S, R,L) at a state s0 ∈ S, in symbols: M, s0 |= p. The truth relation
|= is inductively defined as in [6]:

7

1. M, s0 |= > and M, s0 6|= ⊥.

2. M, s0 |= a iff a ∈ L(s0).

3. M, s0 |= ¬p iff M, s0 6|= p.

4. M, s0 |= p ∧ q iff M, s0 |= p and M, s0 |= q.

5. M, s0 |= p ∨ q iff M, s0 |= p or M, s0 |= q.

6. M, s0 |= p → q iff M, s0 6|= p or M, s0 |= q.

7. M, s0 |= AX p iff for all s1 such that s0 ½ s1, we have M, s1 |= p.

8. M, s0 |= EX p iff for some s1 such that s0 ½ s1, we have M, s1 |= p.

9. M, s0 |= AG p iff for all paths s0 ½ s1 ½ s2 ½ ... , and for all si along
the path, we have M, si |= p.

10. M, s0 |= EG p iff there is a path s0 ½ s1 ½ s2 ½ ... where for all si

along the path, we have M, si |= p.

11. M, s0 |= AF p iff for all paths s0 ½ s1 ½ s2 ½ ... there is some si

such that M, si |= p.

12. M, s0 |= EF p iff there is a path s0 ½ s1 ½ s2 ½ ... where for some
si along the path we have M, si |= p.

13. M, s0 |= A(p U q) iff for all paths s0 ½ s1 ½ s2 ½ ... there is some
si along the path, such that M, si |= q, and, for each j < i , we have
M, sj |= p.

14. M, s0 |= E(p U q) iff there is a path s0 ½ s1 ½ s2 ½ ... , and there is
some si along the path, such that M, si |= q, and, for each j < i , we
have M, sj |= p.

A temporal structure M = (S,R, L) together with a state s0 ∈ S is a (tem-
poral) model of a CTL formula p iff M, s0 |= p. ¤

Example 6 (CTL Formulae)
Consider the temporal structure M of Example 4 (Figure 3). Some formulae
that can be verified against M are:

1. A[¬test U summary]

On all paths (A) holds ¬test until (U) summary holds, i.e. on all
paths test unit must not occur before the summary unit occurs for the
first time, and it is not relevant whether test unit does or does not
occur afterwards.

8

2. AG((definition ∧ datastructure) → AF(example ∧ datastructure))

Whenever (AG) there is a definition of datastructure, there always
must eventually occur (AF) an example of a datastructure.

¤

Definition 7 (Temporal operator weak-until (W))
We extend the syntax of CTL (Definition 2) with a binary temporal operator
weak-until (W). Its semantics is similar to the one of the until (U) operator
with the difference that it is not required that the formula of the second
operand holds at all in case that the formula of the first operand holds.
This extension results in two new CTL temporal connectives: AW (all paths
weak-until), and EW (some path weak-until), which are defined as follows
[6]:

E[p W q] := E[p U q] ∨ EG p

A[p W q] := ¬E[¬q U (¬q ∧ ¬p)]

¤

Example 8 (AU vs. AW)
Recall the first formula of Example 6: A[¬test U summary]. It requires that
on every path summary unit occurs at some point in time. If we want to
express that summary unit is optional and that the formula is also satisfied
if ¬test holds at each state along a path, then we use the CTL connective
AW:

A[¬test W summary]

¤

4 Specification Patterns for Documents

The primary goal of the work described in this paper is the definition of a
high-level specification formalism for consistency criteria for web documents.
A pattern-based approach to the presentation, formulation, and reuse of
property specifications in reactive systems has been introduced in [3]. A
set of possible constraints has been defined and patterns have been created
for them. The patterns are provided to the users who can identify simi-
lar requirements in their systems and select patterns that address those re-
quirements. Until now, seven specification formalisms are supported, among

9

them CTL [1]. We found that many of these patterns could also be useful
for expressing document properties [7, 8].
Because patterns defined in [3] are meant to be used by users familiar with
the underlying specification formalism, user support for the specification
process is not provided. Different from that situation, our use cases involve
non-expert users; consequently, we have to support them in expressing for-
mal consistency criteria. To this end, we provide an interface allowing to
express loose criteria, which can later be enhanced if necessary.
As one can observe, criteria expressed in natural language are quite ambigu-
ous. For example, requiring that each definition of datastructure is followed
by an example on the same topic, does not specify precisely whether there
should be an example of datastructure on all following paths after definition
of datastructure, or whether it is enough having an example on some path.
Natural language specifications of certain properties of specification patterns
are also ambiguous. Here are some examples of such ambiguities:

• Does q follows p require that q has to hold on all following paths, or
on some path?

• After s could mean after each s or after the first one. It is also not
clear what happens if there is no s in the whole document. Is the
criterion satisfied in this case or not?

• Does the meaning of before s include the narrative unit where s holds
for the first time or not?

The ambiguities of natural language specifications were the main motivation
for us to first define a set of basic specification patterns together with their
corresponding CTL formulae and then to determine how the basic patterns
can be modified, i.e. we defined a set of modified patterns with their corre-
sponding CTL formulae. This way users can execute a two-stage process,
first determining the general properties of the criterion they want to express
adding refinements as necessary in the second step.
The semantics of pattern types, scopes, and modifiers we use is determined
by the definition of the mapping of specification patterns onto CTL as will
be detailed in section 5.

Example 9 (Properties of consistency criteria)
Let us consider the consistency criterion: There always exists a summary
unit before the first test unit. The following important properties can be
observed:

1. It expresses a kind of constraint: the existence of a summary unit.

2. It specifies the part of the document or, more precisely, of its temporal
structure, where the specification should hold: before the first test unit.

10

The properties 1. and 2. characterize a specification pattern of the following
kind: Within the considered structure, on all paths starting from the current
state property p holds before property s holds for the first time. The consid-
ered structure can be the whole document, but also any document fragment.
¤

Definition 10 (Specification pattern)
A specification pattern (for documents) is a generalized representation of a
commonly occurring requirement on the content and structure of documents
(cf. [3]).
Specifications are instances of specification patterns.
A specification pattern is represented by a 4-tuple

(pattern type, p modifier, scope, s modifier).

• A pattern type (pattern type) determines the type of the constraint ex-
pressed by the specification pattern. Each pattern type is represented
by a pattern type name and one or two pattern properties. Pattern
type names (universally, exists, follows, precedes) denote the type of
the constraint and can only be understood in conjunction with pat-
tern properties. A pattern property is a parameter which represents
the CTL formula required to hold by the pattern type. Let p and q be
CTL formulae. Possible values of pattern type are: universally p, exists
p, q follows p, and p precedes q.

universally p means that p holds in every narrative unit. exists p ex-
presses that p has to hold in some narrative unit. q follows p means
each unit satisfying p must be succeeded by a unit for which property
q holds. p precedes q means that if property q holds in some narrative
unit this unit must be preceded by a unit for which property p holds.
By default, each pattern type applies to all paths of a document but
this can be overridden.

• A pattern modifier (p modifier) allows to refine a pattern type, by
further restricting or loosening the original meaning. Possible values of
p modifier are: nullp, absence, immediatep, some path. Modifier nullp
indicates that the original meaning of a pattern type is not changed.

Table 1 shows the allowed pattern modifiers for each pattern type.
For pattern types universally p and exists p there is a pattern modi-
fier some path. It says that the constraint holds on some path of a
document, as opposed to the default meaning. For the pattern type
universally p a pattern modifier absence is defined, which denotes that
p does not hold in any narrative unit. The pattern type q follows p
can be used with the modifier immediatep, which expresses that q must
hold in all next narrative units of the one where p holds.

11

pattern type pattern modifiers
universally p nullp , absence, some path

exists p nullp , some path

q follows p nullp , immediatep

p precedes q nullp

Table 1: Pattern types with allowed pattern modifiers

• A scope determines where in a document a specification is intended to
hold. A scope is represented by a scope name and one or two scope
properties. A scope property is a parameter, which will be replaced by
a CTL formula at instantiation time. Let s and r be CTL formulae.
Possible values of scope are: globally, before s, after s, and between s
and r.

Scope globally requires no parameters and actually expresses an unre-
stricted scope - a specification having this scope applies to the whole
document structure. before s expresses that the specification holds
before or in the same narrative unit where s holds for the first time.
Similarly, after s requires that the specification holds after or in the
same narrative unit where s holds for the first time. Scope between
s and r denotes each part of a document structure between an ap-
pearance of property s and the first following appearance of property
r.

Table 2 shows allowed combinations of pattern types and scopes. Ev-
ery pattern type can be combined with scopes globally, before s, and
after s. Pattern types universally p and exists p can also be used with
scope between s and r.

pattern type scopes
universally p globally, before s, after s, between s and r

exists p globally, before s, after s, between s and r

q follows p globally, before s, after s

p precedes q globally, before s, after s

Table 2: Pattern types with allowed scopes

• A scope modifier (s modifier) allows the refinement of a scope by fur-
ther restricting or loosening the original meaning. Possible values of
s modifier are: nulls, real before, and real after. Modifier nulls indi-
cates that the original meaning of a scope is not changed.

Table 3 shows the allowed scope modifiers for each scope. Scope before

12

s can be restricted with a scope modifier real before to express that the
constraint expressed by the pattern type holds really before s, i.e. no
later than in the preceding unit of the one at which s holds. Similarly,
scope after s can be restricted with a scope modifier real after to express
that it is not sufficient that the constraint represented by the pattern
type holds in the same unit with s, but only after it.

scope scope modifiers
globally nulls
before s nulls , real before

after s nulls , real after

between s and r nulls

Table 3: Scopes with allowed scope modifiers

Specification patterns of the form (pattern type, nullp, scope, nulls), where
both modifiers are set to null, are called basic specification patterns, while
the others are modified specification patterns.

¤

According to Tables 1, 2, and 3 there are 45 specification patterns for doc-
uments, 14 of which are basic specification patterns (cf. Table 4 and 5 in
section 5).

Example 11 (Basic specification patterns)
A temporal structure of a fragment of a WBT document about datastruc-
tures is depicted in Figure 4. The unit start is followed by a preliminary
test about datastructures and an introductory example of a datastructure
in the sequel. Thereafter, a definition and an example of datastructure fol-
low. Further, users can proceed to optional units about abstract datatypes
(definition and example of abstract datatypes). Afterwards a summary and
a test about datastructure follow. Finally the end unit is presented. Users
already familiar with the subject can, for the purpose of repetition, proceed
to the summary of datastructure immediately after the start unit.
In total, there are three narrative paths through this structure:

p1 ”Standard path” - for users who want to learn about datastructures
without additional information:

s0 ½ s1 ½ s2 ½ s3 ½ s4 ½ s7 ½ s8 ½ s9 ½

p2 ”Extended path” - for advanced users who are also interested in addi-
tional information about abstract datatypes:

s0 ½ s1 ½ s2 ½ s3 ½ s4 ½ s5 ½ s6 ½ s7 ½ s8 ½ s9 ½

13

s0 {start}

s3

{definition,

datastructure}

s4
{example,

datastructure}

s7
{summary,

datastructure}

s5

{definition,
abstract_datatype}

s6
{example,

abstract_datatype}

s9 {end}

s8
{test,

datastructure}

s1

{test,

datastructure}

s2

{example,

datastructure}

Figure 4: Temporal structure for Example 11

p3 ”Repetition path” - for users already familiar with the content, for a
brief repetition:

s0 ½ s7 ½ s8 ½ s9 ½

Consider the following consistency criteria defined for the temporal structure
shown in Figure 4:

c1 There is always a test unit before the first definition unit.

This criterion requires that a test exists, before the first definition.
Obviously, the specification pattern of type exists p and scope before s is
needed: (exists test, nullp, before definition, nulls). The corresponding
CTL formula reads:

A[¬definition W test]

c2 Every definition of the topic datastructure is followed by an example
of a datastructure.

It is required that every definition of datastructure is followed by an ex-
ample of datastructure. This corresponds to the pattern type q follows
p and scope globally (this requirement concerns the whole document):
((example∧datastructure) follows (definition∧datastructure), nullp,
globally, nulls). The corresponding CTL formula reads:

14

AG((definition ∧ datastructure) → AF(example ∧ datastructure))

c3 Each unit between the start unit and summary of datastructure is deal-
ing with datastructures.

This criterion corresponds to the pattern type universally p and scope
between s and r. Datastructure must hold within each narrative unit
between the start unit and summary of datastructure: (universally
datastructure, nullp, between start and (summary ∧ datastructure),
nulls). Note, that due to the pattern modifier nullp this pattern indeed
requires the pattern formula to hold on all paths. The corresponding
CTL formula reads:

AG((start ∧ ¬(summary ∧ datastructure)) →
A[datastructure W (summary ∧ datastructure)])

Criterion c1 holds in the temporal structure in Figure 4. On paths p1
and p2 the first definition is found in unit s3 and there is a test before it
(unit s1). On path p3 there is no definition and thus the criterion holds by
convention.
Also criterion c2 holds in the temporal structure of Figure 4. There is one
definition of datastructure (unit s3) which is followed by an example on the
same topic (unit s4) on the relevant paths p1 and p2. Note that there is
also an example of datastructure before the definition, which does not affect
the validity of criterion.
Criterion c3 does not hold in the temporal structure in Figure 4. On path
p2 there are two narrative units (s5 and s6) between start unit and sum-
mary of datastructure at which datastructure does not hold. ¤

In the sequel we present some examples of modified specification patterns.
To better explain the difference in the meaning between basic and modified
specification patterns we also show the corresponding CTL formulae, which
all can be found in Tables 4 and 5 (section 5).
The pattern modifier absence can be applied to the pattern type universally
p to express that a certain property does not hold within any narrative unit.

Example 12 (Modifier absence)
To express the criterion after the summary no definitions are allowed, we
use the pattern type universally p modified with pattern modifier absence
(property definition should not hold) and scope after s. The resulting pattern

15

is (universally definition, absence, after summary, nulls). The corresponding
CTL formula reads:

AG(summary → AG ¬definition)

This criterion holds in the temporal structure of Example 11. ¤

In [3], absence is a separate pattern, but the CTL formulae are almost the
same as in the case of the universally p pattern. The only difference is that
the parameter p is negated. We believe it is important to first recognize the
general type of constraint (something should hold in every narrative unit of
some scope) and then to decide if it is a positive or negative property.
The pattern type modifier immediatep can be applied to the pattern type q
follows p. q follows p immediately means that for each unit, where p holds, q
must also hold in all next narrative units.

Example 13 (Modifier immediatep)
Consider following constraints:

1. Every definition of the topic datastructure has to be followed on all
paths by an example on the same topic. To express this constraint
we use the pattern - ((example∧ datastructure) follows (definition∧
datastructure), nullp, globally, nulls). The corresponding CTL formula
reads:

AG((definition ∧ datastructure) → AF (example ∧ datastructure))

The temporal operator F expresses that an example of datastructure
holds eventually in some narrative unit.

2. Every definition of the topic datastructure has to be immediately fol-
lowed (i.e. in each next narrative unit) by examples on the same
topic. The pattern used above has to be modified with immediatep:
((example∧datastructure) follows (definition∧datastructure), imme-
diatep, globally, nulls). In the previous CTL formula the temporal op-
erator F (eventually) is replaced by X (next):

AG((definition ∧ datastructure) → AX (example ∧ datastructure))

Both constraints hold in the temporal structure of Figure 4.
¤

As already mentioned all pattern types apply, by default, to all paths of a
document. If it suffices for a specification to hold on some path, we us the
pattern modifier some path. On the logic level, modifier some path results
in replacing a path quantifier A with E.

16

Example 14 (Modifier some path)
Consider the criterion: on all paths eventually a summary occurs. This
criterion is represented by the specification pattern: (exists summary, nullp,
globally, nulls). The corresponding CTL formula reads:

AF summary

The path quantifier (A) expresses that there is a summary unit on all paths.
To express that summary occurs eventually on some path, we modify the
pattern type exists p with some path, i.e. we use the specification pattern:
(exists summary, some path, globally, nulls). In the previous CTL formula,
the path quantifier ”all paths” (A) is replaced by ”some path” (E):

EF summary

¤

Example 15 (Modifier real before)
Consider the criterion: there is always a summary unit before the first test.
To represent it, we can use the specification pattern: (exists summary, nullp,
before test, nulls). The corresponding CTL formula reads:

A[¬test W summary]

The meaning of the scope before s implies that test and summary could
actually hold in the same narrative unit. To express the more strict specifi-
cation, that summary occurs really before test (no later than in the preceding
unit) we use the specification pattern: (exists summary, nullp, before test,
real before). The corresponding CTL formula reads:

A[¬test W (summary ∧ ¬test)]

¤

5 Pattern Transformation to CTL Formulae

The meaning of a specification pattern is determined by its mapping onto a
CTL formula. The mappings of specification patterns onto a CTL formulae
are stored in the table of mappings. For every pattern, there is exactly one
formula. Tables 4 and 5 show the entire table of mappings. The columns
from 2 to 5 represent the specification pattern (pattern type, pattern mod-
ifier, scope, and scope modifier, respectively), and column 6 contains the
corresponding CTL formula.

17

no. pattern type pattern
modifier

scope scope
modifier

CTL formula

1 universally p nullp globally nulls AG p

2 universally p absence globally nulls AG ¬p

3 universally p some path globally nulls EG p

4 universally p nullp before s nulls A[(p ∨ (AG ¬s)) W s]
5 universally p absence before s nulls A[(¬p ∨ (AG ¬s)) W s]
6 universally p some path before s nulls E[(p ∨ (AG ¬s)) W s]
7 universally p nullp before s real before A[(p∨(AG ¬s)) W (s∧¬p)]
8 universally p absence before s real before A[(¬p∨(AG ¬s)) W (s∧p)]
9 universally p some path before s real before E[(p∨(AG ¬s)) W (s∧¬p)]
10 universally p nullp after s nulls AG(s → AG p)
11 universally p absence after s nulls AG(s → AG ¬p)
12 universally p some path after s nulls AG(s → EG p)
13 universally p nullp after s real after AG((s ∧ ¬p) → AX AG p)
14 universally p absence after s real after AG((s ∧ p) → AX AG ¬p)
15 universally p some path after s real after AG((s ∧ ¬p) → EX EG p)
16 universally p nullp between

s and r
nulls AG((s ∧ ¬r) → A[p W r])

17 universally p absence between
s and r

nulls AG((s∧¬r) → A[¬p W r])

18 universally p some path between
s and r

nulls AG((s ∧ ¬r) → E[p W r])

19 exists p nullp globally nulls AF p

20 exists p some path globally nulls EF p

21 exists p nullp before s nulls A[¬s W p]
22 exists p some path before s nulls E[¬s W p]
23 exists p nullp before s real before A[¬s W (p ∧ ¬s)]
24 exists p some path before s real before E[¬s W (p ∧ ¬s)]
25 exists p nullp after s nulls A[¬s W (s ∧ AF p)]
26 exists p some path after s nulls A[¬s W (s ∧ EF p)]

Table 4: Table of mappings, part 1

Every specification pattern is mapped onto exactly one CTL formula but not
all CTL formulae can be represented in the form of a pattern instance. For
example, there is no corresponding specification pattern for the following
CTL formula: AG EF help (At any point help is eventually reachable). This
problem could be solved by introducing a new specification pattern, or by
allowing the composition of existing patterns. However, there is a tradeoff
between expressiveness and usability of the pattern system which we dealt
with in favor of usability.

18

no. pattern type pattern
modifier

scope scope
modifier

CTL formula

27 exists p nullp after s real after A[¬s W ((s ∧ ¬p) ∧ AF p)]
28 exists p some path after s real after A[¬s W ((s ∧ ¬p) ∧ EF p)]
29 exists p nullp between

s and r
nulls AG((s∧¬r) → A[¬r W p])

30 exists p some path between
s and r

nulls AG((s ∧ ¬r) → E[¬r W p])

31 q follows p nullp globally nulls AG(p → AFq)
32 q follows p immediatep globally nulls AG(p → AXq)
33 q follows p nullp before s nulls A[((p → A[¬s U q]) ∨

AG(¬s)) W s]
34 q follows p immediatep before s nulls A[((p → AXq) ∨

AG(¬s)) W s]
35 q follows p nullp before s real before A[((p → A[¬s U (q ∧

¬s)]) ∨ AG(¬s)) W s]
36 q follows p immediatep before s real before A[((p → AX(q ∧ ¬s)) ∨

AG(¬s)) W s]
37 q follows p nullp after s nulls A[¬s W (s ∧ AG(p →

AFq))]
38 q follows p immediatep after s nulls A[¬s W (s ∧ AG(p →

AXq))]
39 q follows p nullp after s real after A[¬s W ((s∧¬p)∧AG(p →

AFq))]
40 q follows p immediatep after s real after A[¬s W ((s∧¬p)∧AG(p →

AXq))]
41 p precedes q nullp globally nulls A[¬q W (p ∧ ¬q)]
42 p precedes q nullp before s nulls A[(¬q ∧ ¬s) W ((p ∧ ¬q) ∧

A[¬s W q])]
43 p precedes q nullp before s real before A[(¬q ∧ ¬s) W ((p ∧ ¬q) ∧

A[¬s W (q ∧ ¬s)])]
44 p precedes q nullp after s nulls A[¬s W (s ∧ A[¬q W (p ∧

¬q)])]
45 p precedes q nullp after s real after A[¬s W ((s ∧ ¬p) ∧

A[¬q W (p ∧ ¬q)])]

Table 5: Table of mappings, part 2

6 Specification Tool

From the users’ point of view it is not easy to express a consistency criterion
and to choose the right pattern. Therefore, the proposed framework sup-
ports an incremental process for constructing the appropriate specification.
Figure 5 shows a screen-shot of the GUI of our specification tool. Before

19

1

2 3 4 6

7

5

8

Figure 5: Specification tool

20

building the specification, the user chooses the document to be verified (no.
1 in Figure 5). After that, the process of constructing a specification starts.
First, the user chooses the constraint type she wants to express (i.e. pattern
type) - component 2 in Figure 5. For each pattern type, there is an explana-
tion of its meaning. Second, a pattern modifier is to be set - component 3 in
Figure 5. Only allowed modifiers for the previously chosen pattern type are
enabled. The appropriate scope is to be chosen as the third component (no.
4 in Figure 5). The last component of the specification pattern is a scope
modifier (no. 5 in Figure 5). Again, only the allowed scope modifiers for
the already chosen combination of the pattern type and scope are enabled.
After having chosen the complete specification pattern, the user is presented
the natural language formulation of this pattern with placeholders (no. 6),
which are to be bound to atomic propositions from the temporal model.
For the inspection of the temporal model a dedicated additional tool is
provided. Finally, the CTL formula corresponding to the constructed and
refined specification is shown (no. 7). Having finished the specification, the
user activates the model checker (no. 8).

Example 16 (Construction of a consistency criterion)
Assume the user wants to specify the following constraint: On all paths there
exists a summary unit before the first test unit. Summary unit and test unit
may not occur in the same narrative unit. The following steps are to be
performed:

1. Choose the document to be verified (no. 1 in Figure 5).

2. Choose the pattern type exists p (no. 2 in Figure 5). This pattern
type has one corresponding parameter (P) which will be instantiated
in step 5.

3. Choose the pattern modifier nullp (no. 3 in Figure 5).

4. Choose the scope before s (no. 4 in Figure 5). This scope has one
corresponding parameter (S) which will be instantiated in step 6.

5. Choose the scope modifier real before (no. 5 in Figure 5).

6. The corresponding natural language phrase reads (no. 6 in Figure 5):

On all paths, P holds eventually, before S holds for the first time.

In our example, the user replaces P by the atomic proposition summary
and S by the atomic proposition test.

7. Lookup the respective CTL formula from the translation table (cf.
Table 4) and replace variables with atomic propositions determined in
step 6:

A[¬test W (summary ∧ ¬test)]

21

8. Verify if the specified criterion holds in the chosen document.

The steps 1 to 5 are performed by the user. In step 6 participate both the
system and user, while the system performs steps 7 and 8.

¤

7 Conclusion and Outlook

A user-friendly method for the high-level specification of consistency criteria
for web documents has been presented. We use specification patterns for web
documents to enable the users to incrementally build consistency criteria.
This is especially convenient for users not familiar with temporal logics and
can make all the difference between using temporal logic for consistency
checking and ignoring it altogether.
In future work we will extend the expressive power of our patterns. For
example, the following criterion cannot be expressed in CTL: new concepts
need to be defined before they are used. To this end we will adapt our pat-
terns to the temporal description logic ALCCTL [12]. We will also examine
the possibility of composing specification patterns. First experiments let us
expect that the proposed specification patterns and specification environ-
ment help users to formalize application-specific constraints on documents.
However, to validate our method a field test with different user groups is
planned.

8 Acknowledgments

This work has been funded by the German Research Foundation (DFG)
under contract number FR 1021/7-1.

22

References

[1] Property Pattern Mappings for CTL. http://patterns.pro-
jects.cis.ksu.edu/documentation/patterns/ctl.shtml. Last visited
Apr. 2008.

[2] M. Absmeier. Eine Validierungsumgebung für adaptierbare XML-
basierte Dokumente. Master’s thesis, Chair of Information Manage-
ment, University of Passau, 2006. (in German).

[3] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proc. of the 21st int. conf.
on software engineering, pages 411–420. IEEE, 1999.

[4] E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of theoretical Comp. Sci.: Formal Models and Semantics,
pages 996–1072. Elsevier, 1990.

[5] S. Flake, W. Mueller, and J. Ruf. Structured english for model check-
ing specification. In K. Waldschmidt and C. Grimm, editors, Metho-
den und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen. VDE Verlag, 2000.

[6] M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, Cambridge,
England, 2000.

[7] M. Jakšić. An approach to the example-based consistency checking
of web documents. In Proc. of the 18th Workshop on Foundation of
Databases, pages 75–79, Wittenberg, Germany, 2006.

[8] J. Köck. Musterbasierte Spezifikation von Dokumenteigenschaften.
Master’s thesis, Lehrstuhl für Informationsmanagement, Universität
Passau, 2006. (in German).

[9] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In
Proc. of the 27th ICSE, pages 372 – 381, St. Louis, MO, USA, 2005.
ACM Press.

[10] A. Pilger. Model-Checking von Temporalen Beschreibungslogiken durch
Transformation in Prädikatenlogik erster Stufe. Master’s thesis, Chair
of Information Management, University of Passau, 2006. (in German).

[11] P. D. Stotts, R. Furuta, and C. R. Cabarrus. Hyperdocuments as au-
tomata: Verification of trace-based browsing properties by model check-
ing. Information Systems, 16(1):1–30, 1998.

23

[12] F. Weitl. Document Verification with Temporal Description Log-
ics. PhD thesis, University of Passau, 2008. http://nbn-
resolving.de/urn:nbn:de:bvb:739-opus-12528.

[13] F. Weitl and B. Freitag. Checking content consistency of integrated
web documents. Jour. of Comp. Sci. & Tech., 21(3):418–429, 2006.

[14] F. Weitl, M. Jakšić, and B. Freitag. Towards the automated verifi-
cation of semi-structured documents. Journal of Data & Knowledge
Engineering, 2008. accepted for publication.

24

