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In computer vision the blurring of observed objects in an image is modeled
by a convolution with a point spread function (PSF). The extraction of basic
image feature like points, lines, circles or ellipses is done generally without
knowing the PSF exactly. Therefore, the point extraction must result in an
erroneous position. In this article we show that even for first order optics
the point spread function is not symmetrical. Furthermore, we show that
it depends on the position of the observed point. Therefore, for optical
measurement systems any feature point extraction should be corrected with
respect to this position.
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1 Introduction

Everyone in computer vision knows the lens makers equation: Theoretically there is a
determined object plane where the observation of an object appears sharp in the image.
At any other position of the object the observation must appear blurred. In general, the
sensor plane, i. e. the plane of the imaging sensor in the camera, does not coincide with
the image plane. This can be observed by a blurring of the image.

The common camera model in computer vision does not include this effect. It simply
models a point to point relation and leaves the extraction of the observed feature point
to the point extraction algorithm. To deal with the blurring effect the image is modeled
as a convolution of an ideal image with a mollifying kernel. Without any information of
the optical device one generally assumes that the kernel is symmetrical and identical for
every pixel. But, as we show, even within the theory of first order optics this assumption
is not true.

1.1 Related work

The problem of the determined object plane is not new to computer vision. In fact,
there are many articles which propose to use the blurring to estimate the depth of an
object. The dependency of sharpness on depth can be used to estimate the depth of
an object (see e.g. [AFMO98], [SG87] or [Asl03]). These methods use a very simple PSF
model which does not supply an accuracy that is needed in optical measurement tasks.
In most cases the PSF is simply modeled as a Gaussian.

Another way to achieve a completer sight of the optical behavior of an observed object
is introduced by the 4D light field theory (see [AB91] for an introduction). The 4D light
field is defined as a function from the set of all lines (light rays) to a light value. There
are two principle ways to estimate this function, which is also called plenoptic function:
Either by a well-defined movement of the camera ([MPO04]) or by a special plenoptic
camera ([AW92], [NLBT05]). The plenoptic camera is a camera with a special sensor
array of micro-cameras. Such a camera can be used to approximate a point spread
function, but in general the resolution is not sufficient to observe a non-symmetrical
PSF.

We omit such a holistic approach to the PSF, since we are not interested in the whole
light field but in the light distribution on the sensor plane. For our theoretical derivation
we use the model of paraxial geometric optics with a thin lens. Furthermore, we can
simplify the problem by assuming a point light source as Dirac impulse. We derive the
PSF as response of the optical system on this impulse.

1.2 Overview

In the following section we introduce the first order optics with the ”thin” lens assump-
tion from which the standard camera model can be derived. Although this is a very
simple optical model it will lead to an asymmetric PSF. In the third section we discuss
the impact of the third order optics on the PSF. We conclude that every point extraction



based on a symmetric PSF will lead to erroneous results. In the fourth section we show
by a simple experiment that there is a depth correlated effect in camera calibration.

2 Geometric optics for computer vision

2.1 The “thin lens” assumption and first order optics

First order optics simplifies the refraction law of Snell' n; sin(61) = ng sin(6s) to
n19 = n292 (1)

assuming that all involved angles 6 are so small that sin(f) ~ 6 holds. (ni,na are the
refraction indexes of two medias, 671,65 the angles of the light beam to the normal of
the interface of two medias). Furthermore, we assume a thin lens: The (spherical) lens
is assumed to be a infinitesimal thin. From the refraction point of view the thin lens
behaves like a spherical lens. But the distance which a light ray covers inside the lens is
infinitesimal small. So, from a localization point of view the lens is a plane. A light ray
passing the thin lens is refracted at the surface air/lens satisfying (1) and immediately
after that at the surface lens/air (again satisfying (1)). An immediate consequence of
the thin lens assumption is that any light ray passing the thin lens at the optical axis
will not be refracted, since both surfaces of the thin lens are parallel at this point (see
e. g. [FP02]).

Another consequence of the thin lens model combined with the paraxial optics simplifi-
cation is that for the light ray emitted at a point p at one side of the lens passing the
lens meet in a point 7, at the other side of the lens such that

L1t -
d, di f
holds, with f = Q(n:—l) and d,, resp. d; being the distance of the object p resp. the image

point i, to the lens plane and n; the refraction index of the lens (see [Hec87] for more
details). (2) is often called lens maker’s equation. This means there is a determined
distance behind the lens plane, in our sketch noted as d;, at which an observation of
a point from the object side appears sharp. An object plane parallel to the lens plane
determines a so called image plane parallel behind the lens plan, where the points of the
object plane appear sharp.

2.2 PSF by first order optics

For every observed object point there is one ray emitted by an object point, which passes
the center of the lens. We call this ray the center ray. Let figear be the image which is
obtained by the center ray only. One can imagine this as the image of a pinhole camera.
Of course, this image can not be seen anywhere. The real sensor input function f is

[ = fideal  k (3)

!'Named after Willebrord van Roijen Snell, 1580 - 1626




for a mollifier £ € £2(R%,R) N C>®(R? R). The center ray function figes may be not
continuous, but piecewise continuous. For mathematical reasons we assume that figeal
is twice integrable. Therefore, the input function for the sensor array f is continuous
as a convolution of a £2-function with a smooth function. We call k the point spread
function (PSF). The PSF can be seen as the pulse response of the imaging system. All
rays emitted from an infinitesimal small object point which pass the lens will hit an
sensor plane parallel to the lens plane in a circle, the circle of confusion (see [Hec87]).
For any plane but the image plane this circle has a positive diameter. The circle of
confusion is also the support of the PSF. A simple derivation of the fact that the PSF
is not symmetric can be found in [Hor86]. There it is shown that the irradiance of a
observed point depends on the angle of the object to the lens. We extend this approach
to determine the PSF on the circle of confusion for an image obtained off the image plane.
In our approach it is a function of the position of the object. For our considerations we
represent every point in an cylindrical coordinate system defined by the optical center
O: Every point in this coordinate system can be represented by its distance z to the lens
plane, its distance to the optical axis r and an angle ¢ to a fixed axis in the lens plane.
Let the object be a point p = (¢p, rp, 2p) emitting light in every direction. Further let
ip = (¢i,,74,, 2i,) be the position of the ideal projection of the object point in the image
plane and ¢ = (¢, re, zc) the center of the circle of confusion for the point object in the
sensor plane. We assume that the sensor plane is located at a distance d to the image
plane.
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Figure 1: Identifiers for the object point p, ideal point projection i, lens, image plane
and sensor plane in cylindrical coordinates



The coordinates (¢;,,7i,,2i,) of the ideal image point on the image plane can be ex-
pressed w.r.t. the object point p by

Tpf and zi, = — pr
2p— f zp— f
This result follows by simple considerations (and applying the theorem on intersecting

lines) w.r.t. to first order optics and a thin lens with focal length f.
The coordinates (¢, ¢, z.) of the center of the observed spot in the sensor plane are

¢ip = ¢p + m, i, = (4)

dri, . .
bec = Py Te = Tiy + — (it is 2z, < 0!) and z. = z;, +d. (5)
tp
Let now R, be the radius of the aperture, which in our model is the radius of the

Ryd
Z'Lp :

translucent circle of the lens. Then the radius R, of the circle of confusion is Ry =

Figure 2: Identifiers for the infinitesimal areas dl on the lens and ds on the sensor plane

Let ds = rsdsd¢ be an infinitesimal area of the spot and dl be the corresponding area

rs and ¢; = ¢, holds.
The distance h from the infinitesimal area on the lens dl to object p is

h? = (rpcos(¢p) — ricos(¢r))” + (rpsin(gp) — rysin(er))” + 27 (6)

The angle between the normal of the lens and the ray from the object is a = arccos(%").
Let dl’ be the infinitesimal area perpendicular to this ray: dl’ = dicos(o) = di3. The
(infinitesimal) solid angle dw spanning this area is given by
dr] Zp  ZpZiyTs
dw="5 =dn ="5p
Now, we are considering an isotropic light source with intensity of emitted licht I. Let
dI be the intensity emitted over dw, then it is

zi, \ 2 2
on the lens plane. Then dl = ( ;”) ds and r; = ‘%

drsde (7)

2
ZpZ;

I =Tdw =132

ds (8)
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Figure 3: The object p, the area dl and the area dl’ perpendicular to the light ray

and therefore the intensity N of the light in the spot s becomes
2
ZpZ;

h3d?

N=1I (9)
Fig. 4 and 5 show two examples of the the point spread function N for different lens
parameters. Fig. 4 shows an unrealistic parametrization of a lens since the distance of
the object to the lens is smaller than the twice the focal length. The purpose of this
exaggeration is to point out the asymmetry of the point spread function. The resulting
PSF for a more realistic setup is displayed in Fig. 5. As one in this case there is only
a slight asymmetry. But, in contrast to the common assumption, the PSF is not a
Gaussian at all.
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Figure 4: Intensity N of a spot in the sensor plane for an object at (¢p,7p, z,) = (0,4,7)
for a lens with focal length 4 and radius of aperture 3. The displacement d of
the sensor plane is 0.5



Figure 5: Intensity N of a spot in the sensor plane for an object at (¢p,7p,2p) =

(0,20,50) for a lens with focal length 4 and radius of aperture 3. The dis-
placement d of the sensor plane is 0.5

2.3 The impact of third order optics

The simplification sin(6) ~ 6 is only applicable for small angles §. For wide angle lenses
the Taylor series of the sine must expanded to the third order: sin(f) ~ 6 — %63. This
leads to the so called third order optics. It is easy to see that in third order optics the
refraction of a light ray depends on its distance to this axis. So, the third order optics
with a thick lens yields monochromatic aberrations in every optical system. The so
called five Seidel aberrations® can all be modeled and derived by this model assumption
(see [Hec87]). The Seidel aberrations are (in this particular order):

i.

ii.

iii.

Spherical aberrations

Rays that hit the surface of a spherical lens at a greater distance to the optical
axis will be more focused to the apex than rays at a lower distance. This leads to
a circle of confusion even in the image plane.

Coma

A thick lens can be modeled as two thin lenses introducing two lens planes. But
in fact, these “planes” can only be treated as planes near the optical axis. So, rays
coming from an object not on the optical axis, will be focused off the optical axis,
which is described by these two planes.

Astigmatism

A pencil of rays emitted from object at a great distance to the optical axis will hit
the surface of the lens not symmetrically. This also causes a deformation of the
circle of confusion. Modern lenses suppress astigmatism.

?Named after Ludwig Seidel, 1821 - 1896



iv. Curvature of field

The refraction behavior of the third order optics has also impact on the relationship
of object and image points. For a given object plane parallel to the lens plane the
area of focused image points is not a plane but a curved area. Only for points near
the optical axis it can be approximated by a plane. So, given a planar sensor plane
it is theoretically not possible to get a sharp image in every pixel.

v. Distortion
In third order optics the transversal magnification in the image plane becomes
a function in the distance of the observed image to the optical axis. Instead of
the aberrations above the distortion also effects the center ray. The distortion
as described by Seidel is completely determined by it’s observation in the sensor
plane.

Only the distortion can be handled by a 3D-2D camera mapping. All other aberrations
deflect the circle of confusion. So far, we have not carried out a closed form solution
for the PSF introduced by third order optics. But, we assume that the shape of a PSF
derived by third order optics will be more like as Gaussian.

3 Experiments

To substantiate the result of a position dependent PSF we determined the distortion
parameters at different distances to the camera. For our experiments assume a well
calibrated camera K : R? — R? with = P o § o P,. Where it is

R? x R\ {0} — R?

P, : z H(:p/z)_ (10)

Z y/z

the central projection and

R2 — R2

"6 )06

the change of the camera coordinate system of the image plane to the observed pixel
coordinate system. See [HGOT7] for more details on the camera mapping.

The distortion ¢ is placed after the projection and before the transformation from the
camera coordinate system to the pixel coordinate system. The most common distortion
model is the one of a radial distortion (see e.g. [Atk96]).

D
U+ UZ ki(u? + v?)*
5 (“) = =1 (12)
v+ Z Ei(u® + v?)°
i=1
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Figure 6: Setup for the distortion test

with parameters k1, ..., kp. Many contributions can be found in the literature to perform
this task: [HS97] or [Zha98] deliver useful algorithms for this purpose. They all have in
common that they minimize the error

VK= ) IK0) — il (13)

peP

This means to find a camera mapping such that extracted observed points 7, fit best to
the projected points p € P for a calibration pattern P € R3. In our case the camera
calibration was performed following the algorithm of Zhang (see [Zha98], esp. his remark
on parallel calibration targets).

In our experiment the observation of the prototype filled out the whole image. For our
experiments we choose a radial distortion with four coefficients (i. e. D = 4 in (12)). We
used a calibration pattern on a plane at different distances located equidistantly nearly
parallel to the sensor planes. The planes had a distance of 5cm to each other covering
distances from 60 to 135cm to the camera. The calibration target on the plane was a
51 x 49 point grid with a point distance of 20mm to each other. The diameter of the
points was 2mm and we used the gray value weighted barycenter of the points as feature
extractor. The camera had a common 2/3” CCD sensor and a Pentax 6mm lens.

For each plane we determine the parameters of the radial distortion mapping. In Fig.
7 - 10 we displayed each distortion parameter ki,...,k4. The first plane is the plane
nearest to the camera (i. e. the plane a at distance of 60cm to the camera).One can see
that there is an observable systematic change of the value of all distortion parameters
obtained by this setup.



Figure 7: Value of the parameter ki (ordinate) w.r.t. the depth of the observed plate
(abscissa)
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Figure 8: Value of the parameter ky (ordinate) w.r.t. the depth of the observed plate
(abscissa)



Figure 9: Value of the parameter k3 (ordinate) w.r.t. the depth of the observed
plate(abscissa)
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Figure 10: Value of the parameter k4 (ordinate) w.r.t. the depth of the observed plate
(abscissa)



4 Conclusion and discussion

Point extraction methods assume a symmetric and identical PSF for every pixel. We
showed that this assumption is wrong even within the assumption of first order optics and
a thin lens. The PSF depends on the position of the pixel in the image and on the depth
of the observed object. Since the feature point extraction is based on the assumption of
a symmetrical and identical PSF for every pixel position, camera calibration algorithms
will result in an erroneous configuration. In most cases a camera will be calibrated
w.r.t. a specific plane, where most measurements will be made. But, when the measured
objects appear out of focus problems arise. A calibration algorithm for a camera setup
which has to covers a range with ”out of focus” areas will lead to poor reconstruction
results.
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