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Abstract

A known planar model and its observation in the image of a pinhole camera are
related by a planar homography. This planar homography is up to a scale factor
given by the projection matrix and a rotation and translation. From a number
of observations of the same model one can derive the projection matrix by two
constraints introduced by the rotation part. These constraints can be transformed
to a homogeneous system of linear equations. An additional constraint is needed
to avoid the trivial solution. The canonic way is to determine the solution on the
unit sphere. But this side condition does not reflect any correlation between the
parameters. A solution of this problem may not represent a valid projection ma-
trix. In this article we search for more meaningful restrictions for the solution. For
some special but relevant cases we are able to express the problem by a quadratic
constraint, which leads to a generalized Eigenvalue problem. We show the profit
of the additional constraints in several experimental results.
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1 Introduction

A calibrated camera is the key to every metric 3D reconstruction. The camera mapping
describes the process of mapping a point p ∈ R

3 w. r. t. a reference coordinate system
to an image point ip ∈ R

2 observed by the camera.
It is defined by an isometric transformation followed by a central projection followed

by a reparametrization. The determination of all parameters defining this mapping is a
non-linear optimization problem. Many approaches to this problem can be found (see
e. g. [Tsa87, WCH92, WM94, HS97] and many more). However, the result of a non-
linear optimization depends on a good starting value. We call the task to determine a
closed form for the starting value the camera calibration problem.

Zhang’s approach to the camera calibration problem is based on the observation that
the mapping of planar model to its observation can be described by a planar homog-
raphy which is related to the camera mapping by a scalar ([Zha98]). So, the isometric
transformation part of the camera mapping introduces two conditions from which prop-
erties of the camera mapping can be derived. These properties can be expressed linear
in a six-dimensional vector, whose entries define the reparametrization. The solution of
this system of linear equations on the unit sphere represents a solution of the camera
calibration problem w. r. t. an algebraic error. But the entries of the solution vector
are correlated by the properties from which this vector is derived. This correlation is
supressed by the linearization of the problem. Therefore, a minimum w. r. t. the alge-
braic error does not ensure a valid reparametrization. In particular, an invalid solution
is likely for cameras with a low resolution. Nowadays, range cameras are a relevant
example of image sensors with a very limited resolution. A range camera provides an
image, in which each pixel delivers the distance from the sensor surface to the observed
scene. In this article we present some results for a camera based on the Siemens 64 × 8
Pixel time-of-flight array sensor as presented by Mengel et al. [MLK+07], for a common
web camera, and for a camera with a wide angle lens.

In the following we investigate the correlations between the entries of the solution
vector. For some restrictions of the camera mapping we are able to present additional
constraints for the system of linear equations which are necessary for a valid solution.
The main result will be a quadratic constraint for a projection matrix with a known
aspect ratio. For a projection matrix with unknown aspect ratio we present a necessary
condition for the solution which can also be expressed by a quadratic form. Additionally,
we present closed form solutions for the constrained systems of linear equations.

In the next section we define the camera mapping in Cartesian and in homogeneous
coordinates. The representation in homogeneous coordinates allows to code the pro-
jection and reparametrization of a camera mapping by the so called projection matrix.
Following Zhang ([Zha98]) we formulate two conditions for this projection matrix de-
rived by observing planar patterns in the third section . These conditions are necessary
for the parameters of the projection matrix. In the fourth section a linear guess of these
parameters applying the conditions is derived. To ensure a valid solution of this lin-
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2 The camera mapping

ear guess, we propose additional constraints for the starting point for several restricted
camera models. We complete this presentation by some experimental results.

2 The camera mapping

2.1 Camera parametrization in a Cartesian coordinate system

The first step of every camera mapping is an isometric coordinate transformation from
the reference coordinate system to the camera coordinate system. An isometric transfor-
mation T : R

3 → R
3 can be described by a rotation R ∈ R

3×3 and a translation t ∈ R
3

as T (p) = Rp + t for p ∈ R
3. All parameters describing this transformation are called

extrinsic parameters.
The next step is the projection of 3D point on the image plane. Let Π denote the

central projection w. r. t. the z-coordinate:

(1) Π :

R
2 × R \ {0} → R

2




x
y
z



 7→

(
x/z
y/z

)

.

Note that Π describes no change of units. The result of the central projection describes
a point w. r. t. the camera coordinate system. The last step accomplishes the change of
the camera coordinate system to the image coordinate system. We set

(2) P :
R

2 → R
2

(
u
v

)

7→

(
α γ
0 β

) (
u
v

)

+

(
u0

v0

)

where (u0, v0) denotes the intersection of the optical axis with the image plane w. r. t.
the image coordinate system and is called principal point. The parameters α and β are
scale factors in the two directions of the imaging sensor. If f is the focal length of the
camera and du × dv is the size of a CCD-element, then the parameters α and β can be
interpreted as α = f

du

and β = f

dv

. γ describes the skewness between the axes of the
pixel coordinate system. For γ = 0 the coordinate axes of the image coordinate system
are perpendicular. For real sensors the image coordinate system should be orthogonal,
but due to a misaligned lens it may appear skewed in the projection matrix.

After all, our camera mapping K : R
3 → R

2 can be parametrized by K = P ◦ Π ◦ T .
However, real camera mappings often show a different behavior. A distortion mapping
δ : R

2 → R
2 in the image plane w. r. t. the camera coordinate system must be defined

to model the camera mapping for real cameras. The distortion is placed after the
projection and before the transformation from the camera coordinate system to the
image coordinate system: K = P ◦ δ ◦Π ◦ T . The most common distortion model is the
one of a radial distortion (see e.g. [Atk96]).
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2.2 Camera parametrization in homogeneous coordinates

A camera model with no distortion (δ = id) is called pure pinhole camera model. All
parameters which describe the mapping P ◦ δ are called intrinsic camera parameters.

2.2 Camera parametrization in homogeneous coordinates

For a vector x = (x1, . . . , xn)t ∈ R
n let x̃ = (x1, . . . , xn, 1)t be the canonic embedding of

x into the projective completion P(Rn) of R
n. x̃ are the homogeneous coordinates of x.

The transition from a Cartesian reference coordinate system to homogeneous coordinates
allows us to denote coordinate system transformations as matrices. Since a camera
mapping of a pure pinhole camera model consists of coordinate system transformations
the mapping of a pure pinhole camera can be described by a matrix. We define

(3) T̃ :=
[
Rt

]
∈ R

3×4,

where the first three columns of T̃ are defined by the columns of a rotation matrix R
and the last column represents a translation t. Furthermore, we call

(4) P̃ :=





α γ u0

0 β v0

0 0 1





the projection matrix. Assuming a pure pinhole camera without distortion

(5) K̃ := P̃ T̃ ∈ R
3×4

describes the camera mapping. The projection (u, v) ∈ R
2 of a point (x, y, z) ∈ R

3 by
the camera mapping fulfills

(6) λ





u
v
1



 = K̃







x
y
z
1







for a scalar λ ∈ R. Equation (6) is called pinhole model equation. So, for every point
p = (x, y, z)t the projection (u, v) by the camera K can be obtained from (u′, v′, w′) =
K̃(x, y, z, 1)t by setting (u, v) = ( u′

w′
, u′

w′
)t, if w′ 6= 0. Otherwise, the point has no image

point and accordingly is a point at infinity in the projective sense.

3 Camera calibration

The process of determining the extrinsic and intrinsic camera parameters is called camera
calibration. Most algorithms determine these parameters by observing a well known
model M, where M ⊂ R

3 is a finite set of points w. r. t. the reference coordinate system.
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3 Camera calibration

For every p ∈ M we denote ip ∈ I ⊂ R
2 for the observed projection of p in the image

plane I w. r. t. the image coordinate system.
The standard camera calibration minimizes the function

(7) Φ : K 7→
∑

p∈M

‖ip −K(p)‖2 .

p

ip

K(p)

K

Figure 1: Minimized distance of the calibration

This means that the calibration minimizes the Euclidean distances of the observed
image points ip to the model points projected on the image plane by the camera mapping
K (see Fig. 1).

For flexible calibration purposes the set of points M is often defined by a grid of points
on a plane (e. g. obtained by processing images of an observed checkerboard pattern).
Obviously, more than one observation of such a planar calibration pattern is needed to
yield a sufficient result. A planar pattern provides great flexibility when using several
observations at different positions and angles. With multiple targets the number of
parameters in the error function Φ arises: one has to determine the position of every
pattern. For N positions of the model the error function becomes

(8) ΦN : (P, δ, T1, . . . , TN) 7→
N∑

n=1

∑

p∈M

‖in,p − P ◦ δ ◦ Π ◦ Tn(p)‖2

where in,p is the observation of p ∈ M in the n-th image.
Obviously, the minimization of ΦN defines a non-linear problem. Such a problem

depends crucially on an adequate starting value. In the next section we follow the ideas
of Zhang in [Zha98] to obtain a closed form solution for the intrinsic camera parameter
in an algebraic sense.
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One should note that the knowledge of the intrinsic parameters allows an estimation
of the extrinsic parameters (see e. g. [HSG06]).

4 A starting solution from constraints of the observed

homographies

Assuming a pure pinhole camera an image of an calibration object defines a homogra-
phy from the object’s coordinate system to the image coordinate system. For a fixed
observation (ip)p∈M of a model M the homography H ∈ R

3×4 should minimize

(9)
∑

p∈M

‖ip − Π(Hp̃)‖2.

With the pinhole equation (6) for an ideal observation of the model M

(10) λH = P̃ T̃ = P̃
[
Rt

]

must hold, for a pure pinhole camera P̃ T̃ and a λ ∈ R

Let H = (h1 h2 h3 h4) ∈ R
3×4 with columns hi ∈ R

3 for i = 1, . . . , 4 be the homogra-
phy which minimizes (9). A planar model M defines a reference coordinate system such
that every z-coordinate of a point in the model plane is zero. This means it is

(11) H







x
y
0
1







= (h1 h2 h4)





x
y
1





for every point (x, y, 0)t within the model plane. Therefore, the column h3 is not of
interest when we observe a planar pattern. The determination of the planar homography
H ′ = (h1 h2 h4) defines a non-linear problem with 8 degrees of freedom, since H ′ is
determined up to scale factor. A linear estimation of a starting point can be found in
[Zha98]. A normalization of the input data as described in [Har97] will improve the
initial guess.

Let now r1, r2, r3 ∈ R
3 be the columns of a rotation matrix R = (r1 r2 r3). For a

planar target we derive by Equation 6

(12) λ





u
v
1



 = P̃ T̃







x
y
0
1







= P̃ (r1 r2 t)





x
y
1





for a scalar λ ∈ R. Therefore, it follows λ(h1 h2 h4) = P̃ (r1 r2 t) with Equation 10 and
Equation 11.
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4 A starting solution from constraints of the observed homographies

The columns r1 and r2 of the rotation matrix R are orthonormal. With λP̃−1(h1 h2 h4) =
[
r1 r2 t

]
we obtain

(13) 0 = rt
1r2 = λ2

(

P̃−1h1

)t

P̃−1h2 = λ2ht
1(P̃

−1)tP̃−1h2 .

Hence, for λ 6= 0

(14) ht
1P̃

−tP̃−1h2 = 0

holds, where P̃−t denotes (P̃ t)−1. Analogously, with rt
1r1 = rt

2r2 = 1 we obtain

(15) ht
1P̃

−tP̃−1h1 − ht
2P̃

−tP̃−1h2 = 0 .

Equation 14 and 15 define two constraints for the projection matrix P̃ . These equations
can also be derived by analyzing the image of the absolute conic P̃−tP̃−1 and the circular
points. For a better readability we omit the details of this approach. See [HZ00] for an
elaborated introduction.

4.1 Zhang’s starting solution

We now present the original approach of Zhang as presented in [Zha98] to the camera
calibration problem: The matrix B = P̃−tP̃−1 is given by

(16) B =






1
α2 − γ

α2β

v0γ−u0β

α2β

− γ

α2β

γ2+α2

α2β2 −γ(v0γ−u0β)+v0α2

α2β2

v0γ−u0β

α2β
−γ(v0γ−u0β)+v0α2

α2β2

(v0γ−u0β)2+v2

0
α2

α2β2 + 1




 .

Since B is symmetric, it can be parametrized by six values: b = (b1, b2, b3, b4, b5, b6)
t

with b1 := B11, b2 := B12, b3 := B22, b4 := B13, b5 := B23, and b6 := B33. Let h1 :=
(h11, h21, h31)

t and h2 := (h12, h22, h32)
t be the first and the second column of H ′. Then

it is

ht
1Bh2 = (h11h12, h12h21 + h22h11, h22h21,(17)

h12h31 + h32h11, h22h31 + h32h21, h32h31)b,

ht
1Bh1 = (h2

11, 2h11h21, h
2
21, 2h11h31, 2h21h31, h

2
31)b,(18)

and ht
2Bh2 = (h2

12, 2h12h22, h
2
22, 2h12h32, 2h22h32, h

2
32)b.(19)

Therefore, Equation 14 and Equation 15 are linear in b. Hence,

(20)
(

h11h12 h12h21+h22h11 h22h21 h12h31+h32h11 h22h31+h32h21 h32h31

h2

11
−h2

12
2h11h21−2h12h22 h2

21
−h2

22
2h11h31−2h12h32 2h21h31−2h22h32 h2

31
−h2

32

)

b = 0

must hold for every observed homography H . For n observations we get n homographies
and hence 2n equations which we stack in a matrix V , such that V b = 0 must hold.
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4.2 A starting solution with known center and zero skew

To avoid the trivial solution one can compute b∗ = min
‖b‖=1

‖V b‖, which is the Eigenvector

associated to the smallest eigenvalue of V tV . b∗ encodes B up to a scale factor λ. From
b∗ = λ(B11, B12, B22, B13, B23, B33)

t Zhang derives

(21)

v0 =
b∗2b

∗
4 − b∗1b

∗
5

b∗1b
∗
3 − b∗2

2 ,

λ = b∗6 −
b∗4

2 + v0(b
∗
2b

∗
4 − b∗1b

∗
5)

b∗1
,

α =

√

λ

b∗1
, and

β =

√

λb∗1
b∗1b

∗
3 − b∗2

2

,

γ = −
b∗2α

2β

λ
,

u0 =
γv0

β
−

b∗4α
2

λ
.

It should be noticed that the constraint ‖b∗‖ = 1 does not guarantee that all assignments
in (21) are well defined.

Another way to obtain the projection matrix P̃ from b∗ is given by the Cholesky

factorization of the matrix

(
b∗
1

b∗
2

b∗
4

b∗
2

b∗
3

b∗
5

b∗
4

b∗
5

b∗
6

)

defined by b∗ (see e. g. [HZ00]). For a positive

definite symmetric matrix A the Cholesky factorization A = CtC ensures that the
diagonal entries in the upper triangular matrix C are positive. The scale factor λ can
be obtained simply be the fact that P̃33 = 1 holds for the projection matrix. However,
this requires that b∗ encodes a positive definite matrix.

4.2 A starting solution with known center and zero skew

To simplify the problem we assume that the principal point w. r. t. the image coordinate
system coincides with the center of the image. In this case the parameters u0 and v0

of the projection matrix are known. Furthermore, we assume that the imaging device
is located strictly perpendicular to the optical axis of the lens and that the axes of
the imaging device define an orthogonal coordinate system. This yields γ = 0 in the
projection matrix. In this case we are able to parametrize B by using two variables

(22) B =






1
α2 0 −u0

α2

0 1
β2 − v0

β2

−u0

α2 − v0

β2

u0

α2 +
v2

0

β2 + 1




 =





b1 0 −u0b1

0 b2 −v0b2

−u0b1 −v0b2 u2
0b1 + v2

0b2 + 1





with b1 = 1
α2 , b2 = 1

β2 . This means that in this case the parameters b1, b2 are uncorrelated.

The constraints (14) and (15) lead to a system of linear equations, since for b = (b1, b2)
t
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4 A starting solution from constraints of the observed homographies

it is

ht
1Bh2 =

(
h11h12 − u0(h11h32 + h31h12) + u2

0h31h32,(23)

h21h22 − v0(h21h32 + h31h22) + v2
0h31h32

)
b

+ h32h31

ht
1Bh1 =

(
h2

11 − 2u0h11h31 + u2
0h

2
31, h

2
21 − 2v0h21h31 + v2

0h
2
31)

)
b + h2

31(24)

ht
2Bh2 =

(
h2

12 − 2u0h12h32 + u2
0h

2
32, h

2
22 − 2v0h22h32 + v2

0h
2
32)

)
b + h2

32.(25)

So, the constraints ht
1Bh2 = 0 and ht

1Bh1−ht
2Bh2 = 0 yield a system of linear equations.

Here, a solution can be obtained by one observation. Otherwise, for n > 1 observations
we obtain the linear least squares problem ‖V ′b − h′‖. In fact, the closed form solution
implemented in the camera calibration routine of Intel’s Open Source Computer Vision
library (OpenCV, [Bra02]) is based on this method. To be more precise the OpenCV

uses the operation H ′ :=
(

1 0 −u0

0 1 −v0

0 0 1

)

H on every observed homography H to obtain a

modified problem with (u0, v0) = (0, 0). In the OpenCV the resulting least squares
problem is solved by the pseudo-inverse. However, a householder transformation will
provide a more numerical stable solution of ‖V ′b−h′‖. Furthermore, a linear constraint
can be formulated: For a valid solution b∗ the value (u2

0 v2
0)b

∗ should be positive. Since
b∗ defines the parameters of the projection matrix only up to scale factor, we can also
demand that (u2

0 v2
0)b

∗ = 1 should hold. In addition to that we can demand that b1 and
b2 have the same algebraic sign, thus b1b2 > 0 should hold. In this case a valid solution
can be constrained to fulfill b1b2 = 1. We do not carry out this case, because the solution
is obvious.

4.3 A starting solution with known center and unknown skew

A skew in the image coordinate system introduces a mixed term of u0 and v0 in B33.
For a known optical center (u0, v0) w. r. t. the image coordinate system we achieve

(26) B =






1
α2 − γ

α2β
−u0

1
α2 + v0

γ

α2β

− γ

α2β

γ2

α2β2 + 1
β2 u0

γ

α2β
− v0

(
γ2

α2β2 + 1
β2

)

−u0
1
α2 + v0

γ

α2β
u0

γ

α2β
− v0

(
γ2

α2β2 + 1
β2

)

u2
0

1
α2 + v2

0

(
γ2

α2β2 + 1
β2

)

− u0v0
2γ

α2β
+ 1







.

Hence, b = (b1, b2, b3, b4)
t with b1 = 1

α2 , b2 = 1
β2 , b3 = γ

α2β
, b4 = γ2

α2β2 yields

(27) B =





b1 −b3 −u0b1 + v0b3

−b3 b4 + b2 u0b3 − v0(b4 + b2)
−u0b1 + v0b3 u0b3 − v0(b4 + b2) u2

0b1 + v2
0(b4 + b2) − 2u0v0b3 + 1



 .
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4.4 A starting solution with known aspect ratio and no skew

As in the case without skew, Equation 14 and 15 lead to a system of linear equations.
Notice that at least two observations are needed to obtain a unique solution. Further-

more, the entries of the vector b are correlated: For example it is
b2
3

b1
= b4. One should

keep in mind that a known center is a strong assumption. In practical applications the
error caused by a fixed but wrong location of the center is much greater than the one by
leaving out a parameter for the skewness of the image axes. In particular, considering
that this parameter should be very small, we omit a detailed analysis of this case.

4.4 A starting solution with known aspect ratio and no skew

An assumption, which is very common for cameras with low resolution, is that the pixels
are actually squared areas. But special camera sensors may also have a very unusual
aspect ratio: In particular, for the sensor of the Siemens range camera ([MLK+07]) the
pixel size is 130µm × 300µm.

In this section we assume that we know the size of sensor element. This means that we
know the factor c ∈ R+ such that it is β = cα in the projection matrix. Furthermore, we
assume γ = 0 in the projection matrix. Therefore, we achieve the restricted projection
matrix

(28) P̃ =





α 0 u0

0 cα v0

0 0 1



 .

In this case it is
(29)

B = P̃−tP̃−1 =





1
α2 0 −u0

α2

0 1
c2α2 − v0

c2α2

−u0

α2 − v0

c2α2

u2

0

α2 +
v2

0

c2α2 + 1



 =
1

α





1
α

0 −u0

α

0 1
c2α

− v0

c2α

−u0

α
− v0

c2α

u2

0

α
+

v2

0

c2α
+ α



 .

B can be described by b = (b1, b2, b3, b4)
t with b1 := 1

α
, b2 := −u0

α
, b3 := −v0

α
, and

b4 :=
u2

0

α
+

v2

0

c2α
+ α:

(30) αB =





b1 0 b2

0 1
c2

b1
1
c2

b3

b2
1
c2

b3 b4



 .

The constraints (14) and (15) can be stacked in a 2n × 4-matrix V . It is

ht
1Bh2 =

(
h11h12 +

1

c2
h21h22, h12hh31 + h11h32,

1

c2
(h22h31 + h32h21), h31h32

)
b,(31)

ht
1Bh1 =

(
h2

11 +
1

c2
h2

21, 2h11h31,
2

c2
h21h31, h

2
31

)
b,(32)

ht
2Bh2 =

(
h2

12 +
1

c2
h2

22, 2h12h32,
2

c2
h22h32, h

2
32

)
b.(33)
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4 A starting solution from constraints of the observed homographies

But, instead of determining min ‖V b‖ subject to ‖b‖ = 1 we are now able to formulate
a meaningful constraint for the solution:

(34)
b2
2

b1

+
b2
3

c2b1

+
1

b1

=
u2

0

α
+

v2
0

c2α
+ α = b4

must hold for a valid solution of the calibration problem. This means

(35) b2
2 +

1

c2
b2
3 + 1 = b1b4 ⇔ b1b4 − b2

2 −
1

c2
b2
3 = 1

should be fulfilled by a solution b∗. This can be put into matrix form by

(36) bt







0 0 0 1
2

0 −1 0 0
0 0 − 1

c2
0

1
2

0 0 0







︸ ︷︷ ︸

=:C

b = 1.

The problem to determine min ‖V b‖2 = min btV tV b subject to btCb = 1 can be solved
by the Lagrange approach: A solution must satisfy

(37)
(
V tV − λC

)
b = 0

for a Lagrange-multiplier λ ∈ R (see e. g. [Jah96]). The task to find a suitable λ and b
defines a generalized Eigenvalue problem. But, since C is regular, we achieve

(38)
(
C−1V tV − λI

)
b = 0.

Hence, the solution b∗ is the Eigenvector associated to the smallest non-negative Eigen-
value of C−1V tV (see e. g. [Bjö96]).

4.5 A starting solution with known aspect ratio and unknown skew

If we want to include the skewness γ into the projection matrix with a known aspect
ratio c, we obtain

(39) P̃ =





α γ u0

0 cα v0

0 0 1





and subsequently

(40) B = P̃−tP̃−1 =





b1 b4 b2

b4 b5 b6

b2 b6 b3





12



4.6 A starting solution with no skew

with

b1 :=
1

α2
, b4 := −

γ

α3c
,

b2 :=
v0γ − u0cα

α3c
, b5 :=

γ2

α2c2
+

1

α2c2
,(41)

b3 :=
(u0cα − v0γ)2

α4c2
+

v2
0

α2c2
+ 1, and b6 :=

u0cαγ − v0γ
2

α4c2
−

v0

α2c2
.

A vector b∗ minimizing ‖V b‖ with b = (b1, . . . , b6)
t and V derived from the constraints

(14) and (15) as in the previous sections should satisfy

(42) b1b3 − b2
2 =

v2
0

α4c2
+

1

α2
> 0.

Since b∗ defines parameters of the projection matrix P̃ only up to a scale factor, we
demand

(43) b1b3 − b2
2 = 1

as a constraint for the vector minimizing ‖V b‖. This constraint can be expressed by a
matrix C ∈ R

6×6 with

(44) C =

(
C1 0
0 0

)

with C1 =





0 0 1
2

0 −1 0
1
2

0 0



 .

We decompose V tV ∈ R
6×6 into three sub-matrices S1, S2, S3 ∈ R

3×3 such that

(45) V tV =

(
S1 S2

St
2 S3

)

holds. Then, the vector b∗ minimizing ‖V b‖ subject to btCb = 1 is the Eigenvector to
the smallest non-negative Eigenvalue of

(46) M = C−1
1 (S1 − S2S

−1
3 St

2).

For a detailed derivation of the mathematics see [HF98].

4.6 A starting solution with no skew

For an unknown aspect ratio we must estimate both scaling factors α and β in the
projection matrix P̃ . Since γ should be small for actual camera mappings, we assume
γ = 0 and therefore obtain a simpler problem than the one discussed in 4.1. With this
the matrix B = P̃−tP̃−1 is given by

(47) B =






1
α2 0 −u0

α2

0 1
β2 − v0

β2

−u0

α2 − v0

β2

u2

0

α2 +
v2

0

β2 + 1




 .
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4 A starting solution from constraints of the observed homographies

4.6.1 A straight forward constraint

Setting b1 := 1
α2 , b2 := 1

β2 , b3 := −u0

α2 , b4 := − v0

β2 , and b5 :=
u2

0

α2 +
v2

0

β2 + 1 we parametrize

(48) B =





b1 0 b3

0 b2 b4

b3 b4 b5





With the constraints (14) and (15) we obtain

ht
1Bh2 =

(
h11h12, h21h22, h12hh31 + h11h32, h22h31 + h32h21, h31h32

)
b,(49)

ht
1Bh1 =

(
h2

11, h
2
21, 2h11h31, 2h21h31, h

2
31

)
b,(50)

ht
2Bh2 =

(
h2

12, h
2
22, 2h12h32, 2h22h32, h

2
32

)
b.(51)

Since these equations are linear in b they can can be stacked in matrix form V b with
V ∈ R

n×5.
An obvious constraint for the minimizing b = (b1, b2, b3, b4, b5)

t arises from B33:

(52)
b2
3

b1
+

b2
4

b2
+ 1 =

u2
0

α2
+

v2
0

β2
+ 1 = b5.

Unfortunately, this defines no quadratic constraint.

4.6.2 A least squares problem with quadratic constraint

To overcome the problem of a non-quadratic constraint, we could try to parametrize B
by a vector of six values. Let b = (b1, . . . , b6)

t ∈ R
6 be defined as b1 := 1

α2 , b2 := 1
β2 , b3 :=

−u0

α2 , b4 := − v0

β2 , b5 :=
u2

0

α2 ,, and b6 =
v2

0

β2 . Then we get

(53) B =





b1 0 b3

0 b2 b4

b3 b4 b5 + b6 + 1



 .

This parametrization introduces two obvious constraints for the entries of b:

b5 =
b2
3

b1
⇒ b5b1 = b2

3,(54)

b6 =
b2
4

b2

⇒ b6b2 = b2
4.(55)

Therefore, b2
3 + b2

4 − b5b1 − b6b2 = 0 ⇔ btCb = 0 holds with

(56) C =











0 0 0 0 −1
2

0
0 0 0 0 0 −1

2

0 0 1 0 0 0
0 0 0 1 0 0
−1

2
0 0 0 0 0

0 −1
2

0 0 0 0











.
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4.6 A starting solution with no skew

Note that C has full rank.
With this parametrization the constraints (14) and (15) become

ht
1Bh2 = (h11h12, h22h21, h12h31 + h11h32, h22h31 + h21h32, h31h32, h31h32)b(57)

+ h31h32 = 0,

ht
1Bh1 = (h2

11, h
2
21, 2h11h31, 2h21h31, h

2
31, h

2
31)b + h2

31 =(58)

ht
2Bh2 = (h2

12, h
2
22, 2h12h32, 2h22h32, h

2
32, h

2
32)b + h2

32.

So, we obtain two equations which are linear in b. Stacking these equations determines
a least squares problem ‖V ′b− h′‖ with 2n lines for n observations. The task is now to
determine b∗ ∈ R

6 such that b∗ minimizes ‖V ′b − h′‖ subject to btCb = 0. But, as one
can see by the definition of V ′ the vectors b′ = (0, 0, 0, 0, 0, 1)t and b′′ = (0, 0, 0, 0, 1, 0)t

are always solutions of the problem since it is V ′b′ = V ′b′′ = h′.

4.6.3 Combining necessary conditions to a quadratic constraint

We now return to the original parametrization of B by five parameters as in (48) with

b1 := 1
α2 , b2 := 1

β2 , b3 := −u0

α2 , b4 := − v0

β2 , and b5 :=
u2

0

α2 +
v2

0

β2 + 1. For a valid projection
matrix the following inequalities must hold

(59) b1b2 > 0, b1b5 > 0, b2b5 > 0, and b3b4 > 0

because these entries of B have the same sign. Hence,

(60) b1b2 + b1b5 + b2b5 + b3b4 > 0

must hold necessarily. Since the constraints (14) and (15) define a solution b only up to
a scale factor, we demand that

(61) b1b2 + b1b5 + b2b5 + b3b4 = 1

should hold for a minimum of ‖V b‖ with V as defined by Equation 49 - 51. The quadratic
constraint in Equation 61 can be put into a regular matrix C ∈ R

5×5 with

(62) C =









0 1
2

0 0 1
2

1
2

0 0 0 1
2

0 0 0 1
2

0
0 0 1

2
0 0

1
2

1
2

0 0 0









by btCb = 1. Since C is regular the problem to minimize ‖V b‖ subject to btCb = 1 can
be solved by finding the Eigenvector to the smallest positive Eigenvalue of C−1V tV (see
[RS06]).

The Eigenvalues of C are −1
2
,−1

2
,−1

2
, 1

2
, and 1. Since V tV has only positive Eigen-

values, there are only two positive Eigenvalues of C−1V tV . This simple observation can
be very helpful in a numerical aspect of the problem: An implementation may result
in a situation with four or two negative Eigenvalues. In this case, the second highest
Eigenvalue represents the solution.
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4 A starting solution from constraints of the observed homographies

4.6.4 A solution by a linear least squares problem with a Cholesky decomposition

If we set β = cα for an unknown factor c ∈ R+ we obtain

(63)





1
α2 0 −u0

α2

0 1
c2α2 − v0

c2α2

−u0

α2 − v0

c2α2

u2

0

α2 +
v2

0

c2α2 + 1



 =
1

α2c2





c2 0 −c2u0

0 1 −v0

−c2u0 −v0 c2u2
0 + v2

0 + c2α2



 .

Since we are only able to determine a solution up to a scale factor, we set b = (b1, b2, b3, b4)
t

with b1 := c2, b2 := −c2u0, b3 := −v0, and b4 := c2u2
0 + v2

0 + c2α2 to parametrize B as

(64)
1

α2c2





b1 0 b2

0 1 b3

b2 b3 b4





With the constraints (14) and (15) we obtain

ht
1Bh2 = (h11h12, h12h31 + h11h32, h22h31 + h21h32, h31h32)b(65)

+ h22h21 = 0

ht
1Bh1 = (h2

11, 2h11h31, 2h21h31, h
2
31)b + h2

21 =(66)

ht
2Bh2 = (h2

12, 2h12h32, 2h22h32, h
2
32)b + h2

22.

which can be stacked into a least squares problem ‖V ′b − h′‖ without additional con-
straints, since the entries of b are independent. A solution b∗ of this linear leastsquares
problem can be obtained by Householder transformations. If the matrix λB described
by the solution b∗ is positive definite, a Cholesky decomposition results in

(67) λB = λLtL

Therefore, it is L = 1
λ
P−1. The scale factor λ can be computed easily, since we know

(P−1)33 = P33 = 1. If b∗ does not describe a positive definite matrix we achieve only
u0 = − b2

b1
by the definition of the solution vector b∗, since b∗ is only defined up to a scale

factor λ. To obtain the remaining parameters α, β, and v0 one has to determine λ.
With α = 1

c
β we derive

(68)






c2

β2 0 −u0c2

β2

0 1
β2 − v0

β2

−u0c2

β2 − v0

β2

u2

0
c2

β2 +
v2

0

β2 + 1




 =

c2

β2





1 0 −u0

0 1
c2

− 1
c2

v0

−u0 − 1
c2

v0 u2
0 + 1

c2
v2
0 + β2

c2



 .

as a dual least squares problem. It allows us to determine v0 instead of u0 by a solution
of this problem. v0 can now be applied to determine the scale factor λ for b∗ to obtain
the remaining camera parameters.
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5 Experimental results

5.1 Analyzed methods

In this section we show the performance of the proposed additional constraints on sim-
ulated and real data. We refer to the method of Zhang as presented in [Zha98] by
Zhang. Also we denote Zhang5 resp. Zhang4 when we refer to the minimum with
no skew (γ = 0) resp. no skew and identical scale factors in the projection matrix
(γ = 0.α = β). The first can be parametrized with four, the second with five pa-
rameters. Both parametrizations have been proposed by Zhang in [Zha98] to handle
degenerate configurations.

Furthermore, we denote OpenCV for the closed form solution which is used in the
Open Computer Vision Library (Open CV). The sources are available at sourceforge1.
Unlike proposed in section 4.2 we applied no additional constraint. In contrast to the
original code we apply Householder transformations instead of the pseudo-inverse to
solve the linear least squares problem.

For the method with a known aspect ratio c and no skew as presented in section
4.4 we denote Const4. For the problem of finding a starting solution with no skew
(section 4.6) we examine the solution with the necessary condition that some entries
share the same sign (section 4.6.3) (denoted by Const5) and the least squares solution
as introduced in section 4.6.4. We denoted this approach with LSQ. In our experiments
we always applied the Cholesky decomposition to determine the projection matrix for
this approach.

5.2 Simulations

To test the different starting solutions with valid reference data we use simulated data.
Given a projection matrix and a calibration pattern at different positions we project the
points by the camera mapping and simulate a pixel discretization with distortion. Thus,
we are able to measure the difference of the obtain projection matrix to the reference
mapping. In our tests we measured the Euclidean distance of the projection center to
the reference center (referred to as “Center Error”) and the Euclidean distance of the
obtained scale factors to the reference factors (referred to as “Scale Error”).

The minimization of ‖V b‖ with additional constraints defines an algebraic error. This
means that the minimized error can not be seen in the image. Nonetheless, we apply
the error of the standard camera calibration (7) to measure the quality of our proposed
closed form solutions (referred to as “Error”).

1Available at http://sourceforge.net/projects/opencvlibrary/
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5 Experimental results

5.2.1 Simulation of the Siemens range camera

We show the gain of the additional constraints at simulated data derived from modelling
the Siemens range camera as presented in [MLK+07]. In our simulation we model the
image acquisition by a projection matrix with an aspect ratio of 130µm : 300µm. We
assume an image with 64 pixels. Furthermore, we assume that we can extract a position
of an observation with an accuracy of 1

10
of a pixel from the pixel image. Each pixel

position obtained by a projection of a model with 3×3 points is distorted by a Gaussian
noise with mean 0 and variance σ. Tab. 1, 2, and 3 show the measured errors for different
variances. We performed 1000 tests with the model at three different position (parallel,
tilted at 0.2rad to the front, tilted at 0.2rad to the left) at a distance of 1m. Due to the
noise not every experiment leads to a valid solution of the calibration problem. Hence,
we counted these failures (referred to as “Misses”).

It should be considered that we set the real principal point (u0, v0) for the method
OpenCV, so that value for the entry “Center Error” must be always zero.

Error Center Error Scale Error Misses
Zhang 2.290444e+05 1.885655e+02 3.526991e+02 9
Zhang4 1.132229e+05 1.568470e+02 2.886693e+02 0
Zhang5 1.372039e+05 1.732284e+02 3.170649e+02 1
OpenCV 6.421307e+04 0 4.584806e+02 0
Const4 5.475627e+02 1.315052e+01 1.615813e+02 0
Const5 6.827966e+02 4.152875e+00 1.164377e+01 0
LSQ 3.663796e+02 7.947432e+00 9.654681e+01 0

Table 1: Pure pinhole camera with α = 120, β = 26, γ = 0, u0 = 24, v0 = 4. 1000 tests
with an image distortion with variance 0.5

Error Center Error Scale Error Misses
Zhang 4.078436e+04 4.103417e+01 1.209489e+02 25
Zhang4 1.818509e+05 7.904891e+01 1.366925e+02 13
Zhang5 4.067381e+04 4.365336e+01 1.224068e+02 25
OpenCV 3.356776e+04 0 1.685613e+02 0
Const4 5.261600e+04 2.587584e+01 1.712631e+02 0
Const5 2.351673e+03 4.089849e+00 7.675174e+01 0
LSQ 2.370006e+03 6.350904e+00 1.022842e+02 0

Table 2: Pure pinhole camera with α = 120, β = 26, γ = 0, u0 = 24, v0 = 4. 1000 tests
with an image distortion with variance 1
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5.2 Simulations

Error Center Error Scale Error Misses
Zhang 4.894989e+05 4.109475e+01 9.804577e+01 24
Zhang4 3.056477e+05 2.608063e+01 5.929147e+01 14
Zhang5 4.949557e+05 4.155502e+01 9.828731e+01 23
OpenCV 4.070450e+07 0 5.430675e+02 0
Const4 3.079750e+04 7.825065e+00 1.917129e+02 0
Const5 3.626391e+04 2.836785e+00 6.052411e+01 13
LSQ 2.619257e+04 6.647815e+00 9.979276e+01 0

Table 3: Pure pinhole camera with α = 120, β = 26, γ = 0, u0 = 24, v0 = 4. 1000 tests
with an image distortion with variance 1.5

One can see in Tab. 1, 2, and 3 that for increasing noise the proposed methods provide
better results than the standard approach. In particular OpenCV, Const4, Const5,
and LSQ deliver always valid solutions, but the results of OpenCV are much worse
than Const4, Const5, and LSQ for images disturbed by a higher noise.

5.2.2 Simulation of a common camera

For a standard camera setup we set α = 700, β = 600, γ = 0, u0 = 320, v0 = 240. We
assume an image resolution of 640× 480 pixels. Again, we assume an accuracy of point
extraction of 1

10
of a pixel. Each pixel position obtained by a projection of a model with

3 × 3 points is distorted by a Gaussian noise with mean 0 and variance σ. Table 4 and
5 show the measured errors for different variances. We performed 1000 tests with the
model at the same three positions as for the test in section 5.2.1.

Most lenses in computer vision applications are assumed to be rotationally invariant.
Therefore, it is obvious that aberrations caused by the lens depend only on the distance
to the rotation axis (i. e. the optical axis). Hence, the radial distortion

(69) δr

(
u
v

)

=









u + u
D∑

i=1

ki(u
2 + v2)i

v + v

D∑

i=1

ki(u
2 + v2)i









with parameters k1, . . . , kD is commonly accepted to be dominating the observed dis-
tortion. Thus, we also applied a radial distortion in our simulated camera in Table
6.

The results in Tab. 4 and Tab. 5 confirm the ones of section 5.2.1: For higher distorted
images the proposed methods deliver better results. This is also true for cameras with
significant radial aberrations. The best performance of the approach OpenCV in Table

19



5 Experimental results

Error Center Error Scale Error Misses
Zhang 1.967200e+02 3.324624e+00 2.209671e+01 0
Zhang4 1.149798e+02 3.632442e+00 4.030154e+01 0
Zhang5 1.966540e+02 3.288516e+00 2.183596e+01 0
OpenCV 1.628845e+02 0 9.920800e+00 0
Const4 1.957935e+02 3.627571e+00 2.188091e+01 0
Const5 4.723808e+01 2.778486e+00 1.580470e+01 0
LSQ 3.238275e+02 3.275714e+00 2.171136e+01 0

Table 4: Pure pinhole camera with α = 700, β = 600, γ = 0, u0 = 320, v0 = 240. 1000
tests with an image distortion with variance 0

Error Center Error Scale Error Misses
Zhang 1.247490e+05 4.085757e+01 1.998144e+02 0
Zhang4 9.796890e+04 1.649974e+01 1.129240e+02 0
Zhang5 9.861288e+04 1.646876e+01 9.712332e+01 0
OpenCV 1.040106e+05 0 4.549401e+01 0
Const4 9.720122e+04 8.080718e+00 4.554056e+01 0
Const5 9.829203e+04 4.765583e+00 2.075606e+01 0
LSQ 9.869905e+04 9.151808e+00 4.792062e+01 0

Table 5: Pure pinhole camera with α = 700, β = 600, γ = 0, u0 = 320, v0 = 240. 1000
tests with an image distortion with variance 1.0

6 must be seen in connection with the fact that the knowledge of the correct principal
point might not be given for real camera setups.

5.3 Real data

5.3.1 A web camera

To calibrate a common web camera we used a calibration model with a regular grid of
20×19 points with a distance of 1cm to each other at four different positions. The reso-
lution of the camera was 1028×768 pixels, which is not the physical but an interpolated
resolution. Fig. 2 shows an exemplary input image of the data set.

Tab. 7 shows that all proposed methods deliver better results than the standard ap-
proach. But, the best result was obtained by the modified standard approach Zhang5

which uses five instead of six parameters. For the method Const4 we assumed α = β,
i.e. c = 1 in Equation 36.
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5.3 Real data

Error Center Error Scale Error Misses
Zhang 1.011916e+06 1.563035e+02 1.114902e+02 0
Zhang4 6.445274e+05 1.052913e+02 8.659299e+01 0
Zhang5 1.847035e+06 2.677292e+02 4.066258e+02 0
OpenCV 2.497499e+05 0 1.699679e+01 0
Const4 6.341745e+05 9.639704e+01 2.263665e+01 0
Const5 8.043419e+05 1.271122e+02 9.344606e+01 0
LSQ 4.328916e+05 4.834713e+01 1.643554e+02 0

Table 6: Pinhole camera with α = 700, β = 600, γ = 0, u0 = 320, v0 = 240, and radial
distortion (D = 2, k1 = 1.0, k2 = 0.3) see Equation 69. 1000 tests with an
image distortion with variance 1.0

α β γ u0 v0 Error
Zhang 1413.95491 1417.66028 1.38618 511.13524 395.05554 1.15213e+07
Zhang4 1405.81051 1405.81051 0 506.10194 396.65926 8.00958e+06
Zhang5 1412.56213 1412.56213 0 511.64761 395.58454 5.61085e+06
OpenCV 1411.03620 1415.18209 0 511.50000 383.50000 7.16744e+06
Const4 1405.68844 1405.68844 0 506.05717 396.61410 6.92353e+06
Const5 1414.24322 1418.10229 0 512.24748 395.78116 7.79540e+06
LSQ 1412.46609 1416.04116 0 511.60233 395.56954 1.10729e+07

Table 7: Result of the “webcam” data set

5.3.2 Wide angle lens

A wide angle lens introduces a different kind of distortion, the so called fish-eye distor-
tion. Obviously, such a camera is far from being a pure pinhole camera (see Fig. 3). The
assumptions made to obtain a closed form solution of the camera calibration problem
are no longer valid. Nevertheless, we may apply the proposed methods to obtain a start-
ing solution for a subsequent non-linear optimization, while the classic approach fails
sometimes. We used two disjunct data sets of four images in our experiments observing
the same model as in the previous section. Tab. 8 shows the result for the first data set:
For this setup Zhang and Zhang5 deliver no valid solution. For the second data set
(Tab. 9) Zhang4 fails. Moreover, the error values for the proposed approaches are in
most cases better than the ones for the standard methods.

5.3.3 Common CCD camera with 8mm lens

For the last test we used a common camera with an 1
3

′′
CCD sensor and an 8mm lens.

Fig. 4 shows that this setup delivers images with low visible distortion. Again we used
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5 Experimental results

Figure 2: Input image for the “webcam” data set

α β γ u0 v0 Error
Zhang No valid solution
Zhang4 492.43687 492.43687 0 348.56854 1025.33368 4.19843e+07
Zhang5 No valid solution
OpenCV 425.99208 442.95108 0 191.50000 143.50000 1.37736e+07
Const4 -382.42165 -382.42165 0 222.15850 111.63821 1.46295e+07
Const5 154.78194 155.23324 0 239.08388 249.32366 1.31352e+07
LSQ 295.43874 209.74102 0 222.72716 129.81869 1.55342e+07

Table 8: Result of the wide angle data set 1

a model with 20× 19 points on an regular grid with a distance of 1cm to each other. In
constrats to the two previous experiments we used ten positions of the model.

In this case the assumption that the principal point is the center of the image leads to
the second best result (see Tab. 10). If we set α = β, i.e. c = 1 for the constraint matrix
C in (36) for the method Const4 we obtain the best result. Note that this assumption
might only approximately be true. Moreover, the proposed solutions Const5 and LSQ

deliver better results than the standard solution Zhang. Surprisingly, the approach
Zhang5 is better than Const5 and LSQ.
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Figure 3: Input image for the “wide angle” data set

α β γ u0 v0 Error
Zhang 946.39841 1172.14759 -27.60928 -921.0860 246.91108 1.42441e+07
Zhang4 No valid solution
Zhang5 955.44289 1169.00472 0 -863.20976 241.90690 1.71064e+07
OpenCV 650.38393 729.75649 0 191.50000 143.50000 1.74287e+06
Const4 -907.74050 -907.74050 0 514.83132 213.01392 5.19799e+06
Const5 580.77123 632.91195 0 -70.95787 204.37658 1.86308e+06
LSQ 168.52903 192.51794 0 115.39772 197.94121 1.35655e+06

Table 9: Result of the wide angle data set 2

6 Conclusion

In this article we investigated some additional constraints for the closed solution of the
camera calibration problem. We were able to formulate additional constraints under
different restrictions of the camera mapping. Some of these restrictions (like a known
principal point) are quite common or - as in the case of a known aspect ratio - are
easy to obtain for special hardware. But, even if the aspect ratio is unknown we are
able to formulate a necessary quadratic side condition for a valid solution of the camera
calibration problem.

The experimental results have shown that for degenerated configurations (i.e. wide
angle lenses or image devices with low resolutions) the proposed additional constraints
provide a valid solution of the closed form camera calibration problem, which is not
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Figure 4: Input image for the “common” data set

α β γ u0 v0 Error
Zhang 1364.94803 1372.94762 -0.65236 340.20294 297.27872 2.06340e+07
Zhang4 1462.94617 1462.94617 0 353.23331 260.73553 2.00844e+07
Zhang5 1367.72411 1375.75560 0 341.04048 296.80323 1.90253e+07
OpenCV 1461.31676 1467.69818 0 383.50000 287.50000 1.65585e+07
Const4 1438.65592 1438.65592 0 349.90556 262.30899 5.19799e+06
Const5 1349.58029 1357.85751 0 339.04232 299.54251 1.95691e+07
LSQ 1335.25135 1343.38407 0 337.46678 301.68071 1.93194e+07

Table 10: Result of the “common” data set

true for the standard approach. Thus, such methods can be applied to obtain a starting
solution for a subsequent non-linear optimization.

References

[Atk96] K.B. Atkinson, editor. Close Range Photogrammetry and Machine Vision.
Whittle Publishing, 1996.
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