
University of Passau

Technical Report

Euclidean vs. projective camera

calibration: Algorithms and Effects on

3D-reconstruction

Tobias Hanning and Simone Graf ∗

September 13, 2007

Abstract

The camera mapping can be seen in two ways. The classic approach is to
emphasize the projective nature of the camera. But also the re-projective nature
can be taken into account: Every point in the image plane determines a viewing
ray. Both mappings can be described by the same set of parameters. In fact the
re-projective camera mapping can be seen as the inversion of the projective camera
mapping. A calibration algorithm determines the parameters which describe the
camera mapping in a non-linear optimization algorithm. In this article we compare
two error functions: The projective error function measures the distance of the
projected prototype to the observed points in the image plane. The re-projective
error function measures the distance of the prototype to the re-projected rays,
which are determined by the observed points. We present calibration algorithms
considering distortions for both error functions and compare them with regard to
the 3D-reconstruction problem.
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1 Introduction

Most technical applications of computer vision need calibrated cameras. In particular
3D-reconstruction tasks depend crucially on the knowledge of the projection properties
of the involved cameras. In this article we compare two approaches to calibrate cameras:
On the one hand we examine the well known projective approach to camera calibration
(cf. [Tsa87], [Zha98], [HS97], [WCH92]), on the other hand we formulate a re-projective
approach.

Both methods define a nonlinear optimization problem to determine the optimal cam-
era. So the first step is the parametrization of the set of cameras to formulate the
optimization problem. The next step towards an optimization routine is to establish
an error function for the given problem. On this topic the two approaches differ: The
projective camera calibration measures the distance of the observed points in the image
plane to the projected points of the calibration pattern. This means that the distances
are measured in the image coordinate system. So the unit of the distance is “pixel”.

In [HGP04] we showed that in the area of stereo camera vision the re-projective
approach to the camera mapping allows a simpler handling of the so called epipolar
constraint. We used a classic projective algorithm to calibrate the cameras and derived
the re-projective properties by inversion of the camera mapping. This approach encour-
ages to take a closer look at the re-projective nature of cameras. Since in [HGP04] we
only used the re-projective mapping, we should be able to calibrate our camera w.r.t.
an error function derived from the re-projection problem. This re-projective calibration
takes advantage of the“image point to viewing ray”property of the camera mapping: All
points that will be projected on the same point in the image plane determine a straight
line in space. Conversely each point in the image plane determines a straight line in the
reference coordinate system of R

3. The re-projective calibration measures the Euclidean
distance of calibration points to the re-projected lines of their observations. Since this
measurement is done in the reference coordinate system the unit of this distances is
metric in the case of a metric Cartesian reference coordinate system.

In the next section we define our camera model and its parametrization. This para-
metrization allows us to formulate the error functions for both approaches in the third
section. In section four we present two methods of 3D-reconstruction. To have equal
conditions when comparing the two approaches, we must present two ways of Euclidean
reconstruction either: First, a method minimizing the projective error function to ascer-
tain the 3D-point, which we call projective reconstruction, second a method taking the
re-projective error function into account, which we call re-projective reconstruction or
Euclidean reconstruction. This finally allows us to compare the two calibration methods
in the fifth section. A discussion and conclusion will end this article.
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2 Modeling the camera

2 Modeling the camera

2.1 The camera mapping

In the following the expression “camera” denotes the whole image acquisition system
including the camera, the lens and its position in a reference coordinate system.

Let K be the set of all cameras. Each element K ∈ K defines a mapping K : R
3 → R

2.
We call this mapping the projection. To solve Euclidean reconstruction problems we are
also interested in the “inverse” mapping K−1 : R

2 → R
3. Obviously for i ∈ R

2 the set
~iK := {x ∈ R

3|K(x) = i} is in general not a singleton. Like most approaches to camera
calibration we model our camera mapping as a pinhole camera with distortion. Since
we model our camera w.r.t. geometric optics we can assume that ~iK is a straight line
([Hec87]). We call the mapping i 7→ ~iK the re-projection of the camera mapping. For
a simpler notation we identify ~iK with K−1({i}). For the pinhole assumption all lines
K−1({i}) (for i ∈ R

2) intersect in one point called the pinhole.

2.2 Camera parametrization

We subsequently present two approaches to parameterize the set of all cameras K of the
pinhole model with distortions. We distinguish two approaches to describe the camera
mapping: First a complete parametrization in Euclidean coordinates is given, second
we present the well known approach to describe the camera mapping as a projective
mapping. This has the advantage that the main part of the mapping can be encoded by
matrices.

2.2.1 Camera parametrization in Euclidean coordinates

The first step of every camera mapping is a coordinate transformation from the reference
coordinate system to the camera coordinate system. All parameters describing this
coordinate transformation T : R

3 → R
3 with p 7→ Rp + t where R ∈ R

3×3 is a rotation
matrix and t ∈ R

3 a translation vector are called extrinsic parameters. Since the rotation
can be defined by three angles the extrinsic parameters consists of six real values (Euler’s
rotation theorem).

The next step is the projection of 3D-point on the image plane. Pz denotes the central
projection w.r.t. the z-coordinate:

Pz :

R
3 \ {z = 0} → R

2





x
y
z



 7→
(

x/z
y/z

)

.

Note that Pz describes no change of units. The result of Pz still describes a point in the
camera coordinate system.
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2.2 Camera parametrization

The distortion mapping δ : R
2 → R

2 is defined in the image plane with respect to the
camera coordinate system. The most common distortion model is the one of a radial
distortion

δr

((
u
v

))

=









u + u
D∑

i=1

ki(u
2 + v2)i

v + v
D∑

i=1

ki(u
2 + v2)i









with parameters k1, . . . , kD where in most cases is D = 2.
The last step accomplishes the change of the camera coordinate system to the (com-

puter) image coordinate system. This is also a change of units: metric to pixel. We
set

P :
R

2 → R
2

(
u
v

)

7→
(

α γ
0 β

)(
u
v

)

+

(
u0

v0

)

where (u0, v0) is the optical center with respect to the pixel coordinate system. If f is
the focal length of the camera and du × dv is the dimension of a CCD-element, then
the parameters α and β can be interpreted as α = f

du

and β = f

dv

. Some authors
(e.g. [Tsa87]) prefer this more physical exemplification of the matrix P . γ describes the
skewness between the axes of the pixel coordinate system. If γ is zero the coordinate
axes of the image coordinate system are perpendicular.

After all, our camera mapping K can be parameterized by K = P ◦ δ ◦ Pz ◦ T . All
parameters which describe the mapping Π := P ◦ δ ◦ Pz are called intrinsic camera
parameters.

2.2.2 Camera parametrization in projective coordinates

The transition from a Euclidean reference coordinate system to a projective coordinate
system allows us to denote changes of coordinate systems as matrices. Since the camera
mapping consists of coordinate system transformations except the distortion, nearly the
whole camera mapping can be described by a matrix.

We define
T̃ =

(
Rt

)
∈ R

3×4 .

Using the notation of Zhang (see [Zha98]) we set

P̃ =





α γ u0

0 β v0

0 0 1





and δ̃((u, v, 1)t) = (δ(u, v), 1)t. Assuming an ideal camera without distortion we define

K̃ = P̃ T̃ ∈ R
3×4
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2 Modeling the camera

to describe the camera mapping. The projection (u, v)t of a world point (x, y, z)t by the
camera mapping fulfills

(1) s





u
v
1



 = K̃







x
y
z
1







,

for a scalar s ∈ R. Equation 1 is called pinhole model equation. So for every world
point X = (x, y, z)t the projection U of X by the camera K can be obtained by setting
Ũ = (ũ, ṽ, w̃) = K̃(x, y, z, 1)t and U = ( ũ

w̃
, ṽ

w̃
)t, if w̃ 6= 0. Otherwise the world point has

no image point and accordingly is a point at infinity in the projective sense.
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3 Camera calibration

Let P ⊂ R
3 be a finite set of points with respect to the reference coordinate system. For

every p ∈ P we denote ip ∈ I for the observed projection of p in the image plane I with
respect to the image coordinate system.

3.1 Projective calibration

The projective calibration minimizes the function

(2) Φ :
K → R+

K 7→
∑

p∈P

‖ip −K(p)‖2 .

This means that the projective calibration minimizes the distances of the observed image

p

ip

K(p)

K

(a) Projective calibration

p

ip

K−1

K−1({ip})

(b) Re-projective calibration

Figure 1: Minimized distances of the calibration methods

points ip to the world points projected on the image plane by the camera mapping K
(see Fig. 1(a)).

3.2 Re-projective calibration

As mentioned before each point in the image plane determines a straight line in the
reference coordinate system intersecting the pinhole of the camera. The re-projected ray
of a point i ∈ I is defined by K−1({i}).
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3 Camera calibration

Unfortunately K−1 = (P ◦ δ ◦ Pz ◦ T )−1 = T−1 ◦ P−1
z ◦ δ−1 ◦ P−1 is not well de-

fined: For (u, v) ∈ R
2 the set P−1

z ({(u, v)t}) = {s(u, v, 1)t|s ∈ R} is a straight line in
R

3 with direction (u, v, 1)t containing the origin. In order to construct a well defined
function P−1

z we choose a suitable representative of P−1
z ({i}) by setting P−1

z ((u, v)t) :=
1√

(u2+v2+1)
(u, v, 1)t. Note that this representative has norm 1. When we refer to this

special representative of the pre-image of Π we denote Π−1(i) instead of Π({i}).
Another difficulty in inverting the camera mapping K arises from the distortion func-

tion δ. For the radial distortion δr no analytical way to determine δ−1
r exists. So one has

to approximate δ−1
r e.g. by an iteration process (see [PWH97] or [HS97]). To determine

different parameters for the transformation from undistorted to distorted coordinates
and from distorted to undistorted coordinates (see [TYO02] or [WM94]) provides an-
other possibility to represent the inverse mapping. Methods to remove the distortion
without estimating the specific parameters in images containing lines (see e.g. [DF95])
can also be found in literature.

The re-projective calibration minimizes the function

(3) Ψ :
K → R+

K 7→
∑

p∈P

dist3(p,K−1({ip}))2 .

In this case “dist3” denotes the distance of the world point to the re-projected ray which
is determined by the observed point ip (see Fig. 1(b)). It is the Euclidean distance of a
point to a line.

With K = Π ◦ T it is K−1 = T−1 ◦ Π−1. Further for every point p, q ∈ R
3, and every

Rotation R ∈ R
3×3, and translation t ∈ R

3 it is ‖p − (Rq + t)‖ = ‖R−1p − R−1t − q‖
thus we get ‖p − T (q)‖ = ‖T−1(p) − q‖.

For a straight line l we achieve dist3(p, T
−1(l)) = dist3(T (p), l), which allows us to

parameterize the line l only by its direction if l contains the origin.

It is dist3(T (p), l)2 = minq∈l ‖T (p) − q‖2 = ‖T (p) − p̂‖2 where p̂ is the orthogonal
projection of T (p) on l. If l is a line through the origin then l can be parameterized by

its direction ~d with ‖~d‖ = 1. If • denotes the inner product it is p̂ =
(

~d • T (p)
)

~d. This

leads us to a very effective method to determine dist3(T (p), l)2 by

dist3(T (p), l)2 = ‖T (p)‖2 −
(

~d • T (p)
)2

.

For an image point ip ∈ I we get the corresponding direction by setting ~dip = Π−1(ip).
Hence the error function (3) of the re-projective calibration becomes

(4) (T, Π) 7→
∑

p∈P

‖T (p)‖2 −
(
Π−1(ip) • T (p)

)2
.
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3.3 Calibration with multiple targets

3.3 Calibration with multiple targets

For flexible calibration purposes the set of points P is often a grid of points on a plane
(see Fig. 2). Since the reference coordinate system is defined by the calibration plate
the z-coordinate of each calibration points is zero. It is easy to see that both calibration
methods yield no sufficient result when using only one image of such a calibration plate
(see e.g. [Zha98]). On the other hand a planar calibration plate provides a great flexibility
when using several images of a plate at different positions and angles. With multiple
targets the number of parameters in our error functions (Eq. 2 and Eq. 3) rises: we
have to determine the position of every plate. Let

∏
be the set of all cameras whose

extrinsic parameters define the identity and T the set of all transformations. Then for
N positions of the calibration plate the error functions become

(5) ΦK :

∏
×T N → R+

(Π, T1, . . . , TN) 7→
N∑

c=1

∑

p∈P

‖ic,p − Π ◦ Tc(p)‖2

in the projective case and

(6) ΨK :

∏
×T N → R+

(Π, T1, . . . , TN ) 7→
∑N

c=1

∑

p∈P

dist3(p, Π
−1(Tc{ic,p}))2

in the re-projective case. ic,p denotes the observation of the point p ∈ P in the c-th
image of the calibration plate.

3.4 Implementation

Like all non-linear optimization algorithms we need a suitable starting value to achieve
an acceptable solution of our camera calibration algorithms. Several attempts to ob-
tain a closed form estimation from observed calibration patterns can be found in the
literature. They differ from using the camera’s manual to utilize constraints of projec-
tive mappings. We use the approach of Zhang [Zha98] to get the starting value of our
non-linear optimization algorithms. Other suitable techniques can be found in [Tsa87],
[WCH92] or [WM94].

We use the same optimization algorithms for the implementation of both approaches.
They only differ in the error function of the non-linear optimization. As mentioned
above we use the closed form solution of Zhang [Zha98] to obtain a starting value for
our nonlinear optimization. The algorithm of Zhang works with multiple targets, so
we have to calculate the transformation part (rotation and translation of the camera
with respect to the reference coordinate system) for every target. The second step in
our calibration algorithm is a refinement of these estimated transformations. Given the
inner parameter estimated by the closed form solution we recalculate each position of
our calibration targets using the Levenberg-Marquardt-algorithm [Mar63].

9



3 Camera calibration

The third step is to refine the inner camera parameter with fixed transformations,
and the fourth step is to refine all camera parameter by the non-linear optimization
algorithm of Levenberg and Marquardt.

Until now we have not yet considered the distortion mapping δ in the calibration
algorithm. For our implementation we choose ∆ as the set of radial distortions with
D = 2 and determine δr for fixed P and T by minimizing

(7)

∆ → R+

δr 7→
∑

p∈P

‖ip − (P ◦ δr ◦ Pz ◦ T )
︸ ︷︷ ︸

K

(p)‖2 ,

which can be approximated by minimizing

(8)
∆ → R+

δr 7→
∑

p∈P

‖P−1(ip) − δr ((Pz ◦ T ) (p)) ‖2 .

On the other hand we approximate δ−1
r by minimizing

(9)
∆ → R+

δ′r →
∑

p∈P

‖δ′r
(
P−1(ip)

)
− (Pz ◦ T ) (p)‖2 .

Note that in our implementation not only δr ∈ ∆ but also the inverse mapping δ′r is in
∆. In general minimizing (9) does not result in δ−1

r , but in a good approximation which
is sufficient for practical use. As a matter of fact δr itself is only an approximation of
the real distortion function.

The last step of our calibration algorithms is a non-linear optimization of all param-
eters by the Levenberg-Marquardt-algorithm with error function (2) for the projective
calibration and (4) for the re-projective calibration.
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4 3D-reconstruction

We compare the approaches to camera calibration by 3D-reconstruction problems. When
we use a setup of two cameras observing the same scene a point in the reference coordi-
nate system will be reconstructed by the observed projections of this point in images of
both cameras.

Both approaches to camera calibration determine their own approach to this (stereo-)
reconstruction problem. The projective reconstruction minimizes the distances of the
projections of the calculated point to the observed points in the image planes. The
re-projective reconstruction determines the point of least Euclidean distance to the re-
projected rays to estimate the position of real point.

4.1 Projective reconstruction

The projective reconstruction is frequently accompanied by making use of the camera
parametrization in projective coordinates as a matrix. To do so it is necessary to un-
couple the distortion mapping: The distortion of the measured pixel coordinates must
be removed using one of the techniques cited above.

It should be noted that this procedure models a different camera mapping K′ =
δ′r ◦ P ◦ Pz ◦ T , because the inverse mapping first removes the distortion. Anyway
this approach is commonly used, because replacing δ′r with P ◦ δr ◦ P−1 maintains the
original camera mapping, and the resulting undistorted coordinates permit us to regard
the remaining camera mapping as ideal camera without distortion.

Reconstructing points can be achieved by a linear and a nonlinear method to estimate
the best possible point of intersection by its projections. Let the 3D-coordinate in
space be X = (x, y, z)t and its corresponding (undistorted) image coordinates be m1 =
(u1, v1, 1)t and m2 = (u2, v2, 1)t. Furthermore let K̃(1) and K̃(2) be the two cameras
of a stereo setup. Then the following two equations can be defined by making use of
the pinhole model equation (1) and the camera projection matrices related to the two
images:

s1(u1, v1, 1)t = K̃(1)(x, y, z, 1)t(10)

s2(u2, v2, 1)t = K̃(2)(x, y, z, 1)t(11)

where s1 and s2 are two arbitrary scalars. They can be determined by the inner product
of the third rows of the projection matrices:

s1 = (K̃(1)
3,1, K̃

(1)
3,2, K̃

(1)
3,3)X + K̃(1)

3,4

and s2 = (K̃(2)
3,1, K̃

(2)
3,2, K̃

(2)
3,3)X + K̃(2)

3,4 .

Furthermore the equations (10) and (11) can then be rewritten as

(12) AX = d ,
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4 3D-reconstruction

with

A =








K̃(1)
1,1 − u1K̃(1)

3,1 K̃(1)
1,2 − u1K̃(1)

3,2 K̃(1)
1,3 − u1K̃(1)

3,3

K̃(1)
2,1 − v1K̃(1)

3,1 K̃(1)
2,2 − v1K̃(1)

3,2 K̃(1)
2,3 − v1K̃(1)

3,3

K̃(2)
1,1 − u2K̃(1)

3,1 K̃(2)
1,2 − u2K̃(1)

3,2 K̃(2)
1,3 − u2K̃(2)

3,3

K̃(2)
2,1 − v2K̃(2)

3,1 K̃(2)
2,2 − v2K̃(2)

3,2 K̃(2)
2,3 − v2K̃(2)

3,3








and d =








u1K̃(1)
3,4 − K̃(1)

1,4

v1K̃(1)
3,4 − K̃(1)

2,4

u2K̃(2)
3,4 − K̃(2)

1,4

v2K̃(2)
3,4 − K̃(2)

2,4








.

Since we have 4 equations and 3 unknowns we solve

X = argmin
Y ∈R

3

‖AY − d‖2

by X = (AtA)−1Atd (if AtA is regular). The solution of this linear method can be
used as an initial guess for a nonlinear optimization problem. We minimize the distance
between the observed points and the projection of the estimated point in the image plane
with respect to the image coordinate system: Set (ũ1, ṽ1, w̃1) = K̃(1)X and (ũ2, ṽ2, w̃2) =
K̃(2)X. Then X should minimize

(

u1 −
ũ1

w̃1

)2

+

(

v1 −
ṽ1

w̃1

)2

+

(

u2 −
ũ2

w̃2

)2

+

(

v2 −
ṽ2

w̃2

)2

(see [Zha96]). The solution of this non-linear minimization problem is called the projec-
tive reconstruction of X.

4.2 Re-projective reconstruction

In the case of the re-projective reconstruction we determine the point of least Euclidean
distance to the projection rays. One way to represent a straight line in R

3 is to consider
it as an intersection of two planes which are orthogonal to each other. The advantage of
this way to model a line, is that the squared Euclidean distance of a point to the line is
the sum of squared distances to the planes. These distances can be computed efficiently
by the normal forms of the planes. So for the re-projective reconstruction of a point we
have to look for a point with the least Euclidean distance to a number of planes.

For i ∈ {1, . . . , N} let n(i) = (n
(i)
x , n

(i)
y , n

(i)
z )t be the normal and d(i) be the distance of

the plane so that n(i) • · +d(i) is the normal form of the plane according to Hesse. The
point of the least sum of squared Euclidean distances to all planes is the minimum of

ϕ :

R
3 → R

X 7→
N∑

i=1

(
n(i) • X + d(i)

)2
.
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4.2 Re-projective reconstruction

The minimum of ϕ can be easily obtained by differentiating ϕ

ϕ′(X) =

N∑

i=1

2
(
n(i) • X + d(i)

)
n(i)

and finding a solution for ϕ′(X) = 0. Since X = (x, y, z) appears only linear in ϕ′ we
obtain the result by solving BX = D with

B =

N∑

i=1

n(i)
(
n(i)

)t
=














N∑

i=1

(
n(i)

x

)2
N∑

i=1

n(i)
x n(i)

y

N∑

i=1

n(i)
x n(i)

z

N∑

i=1

n(i)
y n(i)

x

N∑

i=1

(
n(i)

y

)2
N∑

i=1

n(i)
y n(i)

z

N∑

i=1

n(i)
z n(i)

x

N∑

i=1

n(i)
z n(i)

y

N∑

i=1

(
n(i)

z

)2














and

D = −
N∑

i=1

d(i)n(i) = −














N∑

i=1

d(i)n(i)
x

N∑

i=1

d(i)n(i)
y

N∑

i=1

d(i)n(i)
z














.

It is remarkable that in the case of the Euclidean reconstruction of a point no non-
linear optimization is needed. Thus the additional framework to obtain the suitable
representation of the projection rays as an intersection of two orthogonal planes in normal
form is justified.
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5 Experimental results

5 Experimental results

5.1 8.5mm lens stereo setup

One test to compare both calibration methods is the 3D-reconstruction of points by a
stereo camera system. The setup we used consists out of two common CCD cameras
with 8.5mm lenses. To calibrate our cameras we use 8 images of a calibration pattern
with a grid of 20×19 dots with 20 cm distance to each other (see Fig. 2).

Figure 2: Calibration grid of 20×19 points

In Table 1 we list the resulting values of both error functions (Eq. 2 and Eq. 3).
Obviously in the case of the re-projective calibration the Euclidean error is lower than the
same value for the projective calibration since this is the objective of this error function.
Consequently the projective error for the projective calibration method is lower than the
same value for the re-projective calibration. The resulting camera parameters for both
methods and cameras are listed in table 2.

To compare the two calibration methods we define two 3D-reconstruction problems:

14



5.1 8.5mm lens stereo setup

Table 1: Minimal values of the optimized error functions – projective and re-projective
– for both calibration methods and both cameras

Error left camera Error right camera
Calibration Projective Re-proj. Projective Re-proj.

Projective 186.894 pix 0.325452m 172.779 pix 0.307025m
Re-proj. 186.983 pix 0.325220m 173.151 pix 0.305378m

Table 2: Obtained camera parameters for projective and re-projective calibration
(8.5mm lenses)

Left camera Right camera
Projective Re-projective Projective Re-projective

α 1301.082 1301.057 1359.023 1359.887
β 1305.719 1305.638 1365.126 1366.030
γ 0.783055 0.699502 1.182897 1.464901
u0 345.5133 345.5417 363.0120 362.6659
v0 280.0936 280.5081 272.2942 271.1639
k1 -0.12926 -0.12746 -0.13097 -0.12594
k2 -0.41933 -0.45143 -0.07319 -0.12728

we measure 3D-distance of points reconstructed from our calibration pattern and the
planarity of the reconstructed 3D-plane.

Reconstruction test

For the first comparison we reconstruct each point of the calibration pattern. To mea-
sure the result we compare the distance of the reconstructed points to their neighbors.
This distance is 20mm on the calibration pattern and therefore should be 20mm in
the reconstruction. In Table 3 we denote the average distance between neighbored re-
constructed points less 20mm. The columns “Projective” and “Re-proj.” denote the
calibration algorithm. For each image we performed the projective and the re-projective
reconstruction of the points. We took four image pairs at different positions and angles
to the cameras. These images were not used for the calibration itself.

Except image pair 3, the re-projective calibration with the re-projective reconstruction
method yield the smallest difference to the true distance between the points. Using
only the projective calibration method, the re-projective reconstruction method almost
gives the best results. Most of the image pairs also have better results for the re-
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5 Experimental results

Table 3: Average of distances between neighbored points in mm (less 20mm) for both
calibration and reconstruction methods

Image Reconstruction Calibration method
pair method Projective Re-proj.

1 Projective -0.00252 0.00106
Re-projective -0.06062 0.00089

2 Projective 0.00340 -0.03319
Re-projective -0.04935 0.00304

3 Projective 0.00888 0.00892
Re-projective 0.00708 0.00908

4 Projective 0.06082 0.00370
Re-projective 0.00888 0.00368

projective calibration when only considering the projective reconstruction method. The
re-projective methods (calibration and reconstruction) are advantageous for this test.

Planarity test

For the planarity test we fit a plane through the reconstructed points and measure the
distance of the points to the fitted plane. The results in Table 4 are obtained for the same
set of images as for the reconstruction test. We compare the result for the projective
( column “Projective”) and the re-projective (column “Re-proj.”) calibration algorithm.
Again we distinguish between projective and re-projective reconstruction of the points.

Table 4: Average of distance in mm to the fitted plane for both calibration and recon-
struction methods

Image Reconstruction Calibration method
pair method Projective Re-proj.

1 Projective 5.239189 5.425621
Re-projective 5.307714 5.454959

2 Projective 3.556000 3.604187
Re-projective 3.425454 3.631118

3 Projective 5.334670 5.403838
Re-projective 5.129301 5.436539

4 Projective 5.638853 5.695013
Re-projective 5.393518 5.732125
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5.2 4.8mm monocular setup

In this case the projective methods – calibration and reconstruction – naturally take
advantage of the character of projective mappings: planes are mapped on planes. There-
fore the first two image pairs yield the best results for this combination of methods.
Nevertheless, the smallest error for the last two image pairs is reached when using the
re-projective reconstruction method. Note that a small distance to the fitted plane im-
plies not that the reconstructed (fitted) plane has a small distance to the original plane.

5.2 4.8mm monocular setup

For another experiment we choose one camera with 4.8mm lens with significant distor-
tion. To calibrate the camera we choose a 9×5 calibration plate at a distance of about
1m (see Fig. 3). For this setup the results of the projective and re-projective calibration
algorithm differ more than those for the 8.5mm lenses (see Table 5). It is remarkable
that the re-projective calibration algorithm improves the Euclidean error by factor 1000
but leaves the projective error nearly untouched (see Table 6). In fact the projective
calibration turned out to be very difficult: The classic approach of Zhang [Zha98] (closed
form calibration followed by nonlinear optimization without the distortion parameters
before really applying Eq. 2) leads to a much worse local minimum. We had to apply
the nonlinear optimization of Eq. 2 directly after the closed form solution.

Table 5: Obtained camera parameters for projective and re-projective calibration
(4.8mm lens)

Projective Re-projective

α 766.3934 766.4256
β 766.7465 767.0491
γ 2.798895 2.656353
u0 379.4183 379.5317
v0 283.5199 282.0707
k1 -0.26054 -0.26748
k2 -0.12400 -0.14375

Monocular reconstruction of a calibration pattern

Obviously the monocular setup allows no stereo reconstruction of single points. For a
rotation R and a translation t we denote TR,t as the resulting transformation of points.
Since we know the position of each point on the plate we can obtain the position of plate
by minimizing

(R, t) 7→
∑

p∈P

‖ip − Π ◦ TR,t(p)‖2
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5 Experimental results

Figure 3: Calibration plate (9×5 points) on slide

Table 6: Minimal values of the optimized error functions for 4.8mm lens

Calibration Error function
method Projective Re-projective

Projective 24.513411 pix 72.73676mm
Re-projective 24.625616 pix 0.08408mm

in the projective case and

(R, t) 7→
∑

p∈P

dist3(TR,t(p) − Π−1({ip})2

in the re-projective case (see [HP99] for details of the re-projective approach). In any case
the non-linear optimization is performed by using the Levenberg-Marquardt-algorithm.
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5.2 4.8mm monocular setup

Moving plane test

We fixed our calibration pattern on a linear sledge which can be moved on one axis with
a very high precision (<0.01mm). Therefore we are able to measure the exactness of
a monocular reconstruction of the calibration with respect to the zero position of the
sledge: We move the plate into the background with a distance of 3 cm between each
observed image. After the sixth position we move the plate back to the foreground. In
Table 7 a comparison of the two calibration algorithms combined with the two recon-
struction methods is shown. For the 7th position in both parts of the table we did not
move the plane, but we took two different images. So the results in these rows (displayed
bold face) can be seen as the noise of the signal.

For all positions of the calibration plate the minimal error is reached using a re-
projective method (calibration or reconstruction), but it must be admitted that the
improvement is of a small magnitude.
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5 Experimental results

Table 7: Results of the moving plate test for the 4.8mm lens in cm

Pos. Recon- Calibration method
of struction Projective Re-projective

sledge method Position Error Position Error

1 Projective 2.9583 0.0417 2.9592 0.0408
Re-proj. 2.9299 0.0701 2.9591 0.0409

2 Projective 2.9804 0.0196 2.9812 0.0188
Re-proj. 2.9538 0.0046 2.9810 0.0190

3 Projective 2.9376 0.0624 2.9383 0.0617
Re-proj. 2.9137 0.0086 2.9382 0.0618

4 Projective 2.9762 0.0238 2.9770 0.0230
Re-proj. 2.9514 0.0049 2.9769 0.0231

5 Projective 2.9800 0.0200 2.9809 0.0191
Re-proj. 2.9551 0.0045 2.9809 0.0191

6 Projective 2.9649 0.0351 2.9654 0.0346
Re-proj. 2.9430 0.0570 2.9652 0.0348

7 Projective 0.0143 0.0144

Re-proj. 0.0130 0.0144

8 Projective 2.9567 0.0433 2.9575 0.0425
Re-proj. 2.9300 0.0700 2.9573 0.0427

9 Projective 2.9732 0.0268 2.9737 0.0263
Re-proj. 2.9528 0.0472 2.9738 0.0262

10 Projective 2.9500 0.0500 2.9510 0.0490
Re-proj. 2.9239 0.0761 2.9508 0.0492

11 Projective 2.9625 0.0375 2.9631 0.0369
Re-proj. 2.9376 0.0624 2.9630 0.0370

12 Projective 2.9798 0.0202 2.9808 0.0192
Re-proj. 2.9513 0.0487 2.9807 0.0193

13 Projective 2.9656 0.0344 2.9661 0.0339
Re-proj. 2.9416 0.0584 2.9661 0.0339
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6 Conclusion and discussion

In this article we presented two different objective functions for the camera calibration
problem. The well known projective error function minimizes the distance of projected
calibration points to observed points. The re-projective error function points out the
re-projective property of a camera: Each observed point in the image plane defines a
straight line in the reference coordinate system, the re-projected line. The resulting error
function minimizes the distance of the calibration points to the re-projected lines.

This error function for camera calibration minimizes the error which should also be
minimized in 3D-reconstruction. Since our reference coordinate system is Euclidean, we
should also measure the distance in the Euclidean sense. This means that we should
consider the distance of points to re-projected lines as orthogonal projection problem
and not as a 2D-distance in a projective space.

The experimental results in section 5.1 encourage to do more research in the field of
re-projective camera calibration.
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