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Abstract We establish a mixture model with spurious outliers and derive its maximum–
integrated–likelihood estimator. It may be computed by a trimmed version of the
EM–algorithm which we call the EMT–algorithm. We analyze its properties and compute
the universal breakdown values of the estimator for normal mixtures. Estimation of the
covariance matrix turns out to be robust.
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1 Introduction

1.1 History and background

Multimodal distributions arise in particular when data emanate from different causes. They
occur, e.g., in pattern recognition, image processing, speech recognition, classification, and
clustering. For some examples see the literature cited in the Introduction of Redner and
Walker [23]. Mixture models are useful for modeling such distributions and their decompo-
sition in components plays a major role in the examples above. The maximum likelihood
paradigm is nowadays the preferred approach to estimating their parameters.

Some issues related to the m.l.e. such as existence, properties (consistency, asymptotic normal-
ity), efficient computation, and robustness have been investigated in the past. Day [3], Sect.
7, notes that the m.l.e. in the strict sense always fails to exist in the normal, heteroscedastic
case. It is sufficient to center one component at one of the data points and have its variance
tend to zero to see the unboundedness of the likelihood function. On the other hand, under
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regularity conditions and in the presence of sufficiently many data a local maximum which
is even strongly consistent and asymptotically efficient always exists, see Kiefer [16] and the
literature cited there. The situation is simpler in the normal homoscedastic case (common
covariance matrix). Day [3] states that solutions to the pooled m.l. equations exist if the
data set is not too small. In fact, there exists a global maximum of the likelihood function.
This was proved by Hathaway [11] for one-dimensional data in a more general context and
is also true in the multivariate context. Moreover, Hathaway proved strong consistency. If
the mixture components are poorly separated then there exist almost always more solutions
to the likelihood equations, Day [3]. The pooled m.l.e. is equivariant w.r.t. affine transfor-
mations. An important and difficult problem is that of selecting the number of components.
Kéribin [15] studied conditions that ensure consistency of certain model selection criteria.
The Bayesian information criterion, BIC, turns out to be a consistent maximum penalized
likelihood estimator for normal mixtures.

Hasselblad [10] and Day [3] designed alternating algorithms for computing the m.l.e. in the
hetero– and homoscedastic cases. Dempster et al. [4] found that they were special cases of a
general concept for ML–estimation in complex models if the distributions can be conveniently
represented by “hidden” variables. They named it the EM–algorithm. Chrétien and Hero [1]
embedded EM in the general scheme of PPA–algorithms, Martinet [19] and Rockafellar [24].

Parameter estimation in mixture models can be severely affected by outliers. A cluster of
remote outlying observations will, as a rule, establish a component of its own. Although the
estimate of the mixture distribution in the sense of a suitable distance measure on the convex
set of probability measures may still be close to the original, the estimate of the parameters

of one component goes astray, at least if a fixed number of components is assumed. This fact
makes robust parameter estimation in mixture models a difficult problem. It has been taken
up mainly in recent years.

• McLachlan and Basford [20] propose robust estimation of the parameters of the com-
ponents, e.g., by means of Huber’s [14] robust M–estimators.

• McLachlan and Peel [21, 22] use mixtures of t–distributions (or Pearson’s type VII
distributions) instead of normal mixtures.

• Fraley and Raftery [7] propose an additional component uniform on the convex hull of
the data in order to accommodate outliers.

However, it turns out that these methods are effective for moderate outliers only, see Hen-
nig [12]. In fact, one gross outlier causes one mean to break down in all three methods.
Actually, breakdown robustness and the general heteroscedastic mixture model with a fixed
number of clusters do not go well together since a small, remote cluster of outliers looks like
a regular cluster breaking one mean down. Some constraint on the covariance structure is
needed. Hennig, therefore, resorts to the mixture model constrained to the set of all variances
≥ v0 for some v0 > 0 and proposes to

• modify Fraley and Raftery’s approach by an additional component with a certain im-
proper uniform distribution.

He shows for one–dimensional data that his method adds breakdown robustness to the m.l.e.,
see [12], Theorem 4.11. Besides v0, his estimator needs a second parameter to be carefully
chosen.
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We take here a different approach to robustness of parameter estimation in mixture models
and restrict matters to homoscedasticity. In Section 2, we adapt the classification model [8]
with “spurious outliers” and (at least) r regular elements to mixtures. We derive the ML–
criterion of this outlier model which is again of the trimming type. For its maximization,
we design an algorithm that consists of the iterative application of an EM–step and a trim-
ming step which we call the EMT–algorithm. In Sections 2.3–2.8, we study its convergence
properties which are similar to those of the EM–algorithm.

The aim of trimming is robustness and we compute in Section 3 various (replacement) break-
down points of EMT for normal mixtures. Theorem 3.2 says that the usual breakdown value
of the common covariance matrix is large. Unfortunately, the same cannot be said about the
breakdown value of EMT for the means, Theorem 3.5: whereas the criterion sustains one gross
outlier, there are data sets such that one mean breaks down if two observations are suitably
replaced with gross outliers. One reason for this misbehavior is the stringency of the usual
breakdown point. It requires proper behavior of the estimator even in the presence of data sets
that are very unlikely to emanate from a mixture distribution with separated components.
We will show in a forthcoming communication that the asymptotic restricted breakdown point

[8] of EMT for the means restricted to data sets that consist of sufficiently separated clusters
is positive. As a tool in some of our proofs we use the MAP–clustering associated with the
mixture.

1.2 General notation

Given two integers m ≤ n, the symbol m. . n designates the set of integers k, m ≤ k ≤ n.
The set of all r–element subsets of a set M is denoted by

(
M
r

)
. The symbol ∆g−1 denotes the

g − 1–dimensional unit simplex, that is, the set of all probability vectors of length g.

We consider data in a measurable sample space E, often d–dimensional Euclidean space R
d.

Our data set is S = (x1, . . . , xn) ∈ En. Parameter spaces of statistical models are metric. We
denote them by the upper case Greek letters Γ, Ψ, and Θ and parameters by the corresponding
lower case letters γ, ψ, θ, and ϑ. If a random variable X : Ω→ E is distributed according to
µ we write X ∼ µ. Its density function w.r.t. some reference measure on E is denoted by fX

or fµ. The conditional density of X given the parameter γ is fγ(x) = fX [x | γ]. We assume
that it is a continuous function of γ.

The cone of positive–definite, symmetric d×d–matrices is denoted by PD(d). Notation related
to various normal cases is introduced in Sect. 2.9.

1.3 The EM–algorithm

The EM algorithm computes the ML (or MAP) estimate of the parameter ϑ ∈ Θ of a complex
statistical model X ∼ µϑ by representing it as a measurable function X = Φ(Y ) of a so–called
complete model Y ∼ νϑ that is easier to handle. At its heart is the so–called Q–functional,
the conditional expectation of the complete log-likelihood ln fνθ

given the observation w.r.t.
the “current” fit ϑ

Q(ϑ, θ) = Eνϑ
[ln fνθ

| Φ = x]. (1)
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Intuitively, one wishes to maximize ln fY [y | θ], where y is the complete variable. Since this
is not observed, the EM–algorithm recursively maximizes Q(ϑ, ·) if possible,

ϑ← argmax
θ

Q(ϑ, θ). (2)

One step in this process is called the EM–step. Dempster, Laird, and Rubin [4] showed that
each iteration of an EM–step increases the observed likelihood (in the sense ≥) and if the
iterations stall then, under regularity conditions, they do so at a critical point of the likelihood
function.

More recently, Chrétien and Hero [1] derived the properties of the EM–algorithm from those
of a proximal point algorithm (PPA) [19, 24] with the conditional Kullback–Leibler divergence
as the penalty function. To this end they introduce the difference of the observed posterior
log-likelihood and the Kullback–Leibler divergence of the complete model w.r.t. the current
complete distribution νϑ conditional on the observation,

H(ϑ, θ) = ln fX [x | θ]−D(ϑ, θ). (3)

We assume that

D(ϑ, θ) =

∫
νϑ[dy | Φ = x] ln

fνϑ
[y | Φ = x]

fνθ
[y | Φ = x]

(4)

is finite and jointly continuous. A simple algebraic transformation shows that the difference
between the functionals Q and H does not depend on the variable θ. Therefore, the EM–
algorithm may also be represented by the PPA–recursion

ϑ← argmax
θ

H(ϑ, θ)

from which its properties flow.

The parameter ϑ is called a fixed point of H (Q) if ϑ ∈ argmaxθ H(ϑ, θ) (ϑ ∈ argmaxθ Q(ϑ, θ)).
Of course, fixed points of H and Q are the same.

1.4 EM for mixtures

Among other things, Dempster, Laird, and Rubin [4] applied the EM–algorithm to estimating
the parameters ϑ = (u, γ) ∈ ∆g−1 × Γ of a mixture distribution with density

fu,γ(x) =
∑

j

ujfγj
(x). (5)

Here, u = (u1, . . . , ug) ∈ ∆g−1 are its mixing parameters and γ = (γ1, . . . , γg) ∈ Γ ⊆ Γg
0

its population parameters. The complex random variable X ∼ fu,γ is a simple function of
a more easily accessible model. It is sufficient to represent each observation X by randomly
switching on one of g random variables Z (l) ∼ fγl

, l ∈ 1..g, with the aid of a stochastically
independent random label L ∼ u in 1..g, the hidden variable, so that X = Z (L). By the
formula of total probabilities, X is distributed according to the mixture distribution (5). The
complete variable of the observation X is thus the joint variable Y = (L,X). In the case of
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n independent observations X1, . . . , Xn one obtains for S = (x1, . . . , xn), X = (X1, . . . , Xn),
Y = (Y1, . . . , Yn), and l = (l1, . . . , ln)

fX [S | u, γ] =
∏

i

∑

j

ujfγj
(xi) and

fY [l, S | u, γ] =
∏

i

ulifγli
(xi).

A further simple computation shows that with another pair of parameters θ = (v, η) ∈
∆g−1 × Γ the functional Q becomes

Q((u, γ), (v, η)) =
∑

l

( ∑

i

w(i, l)
)

ln vl +
∑

l

∑

i

w(i, l) ln fηl
(xi), (6)

the weight w(i, l) being the posterior probability of the observation xi to come from component
l w.r.t. the parameters u and γ. By Bayes’ formula,

w(i, l) = P [Li = l | Xi = xi] =
ulfγl

(xi)∑
j ujfγj

(xi)
. (7)

The weights sum up to 1 over l, i.e., w is a stochastic matrix. The entropy inequality allows
to optimize Eqn. (6) w.r.t. v the maximum being

unew,l =
1

n

∑

i

w(xi, l). (8)

The EM–step starting from a stochastic matrix (w(i, j)) is thus split into an M–step and an
E–step:

E–step: Compute w(i, l) from the current parameters u and γ, cf. Eqn. (7);
M–step: set unew,l = wl(S)/n and maximize

∑
l

∑
i w(i, l) ln fηl

(xi), cf. (6), w.r.t. η to
obtain the parameter γnew.

The EM–algorithm is iterative and alternating running as follows

w(0) −→ (u(1), γ(1)) −→ w(1) −→ (u(2), γ(2)) −→ w(2) −→ (u(3), γ(3)) −→ · · · .

If the m.l.e. exists then the sequence of target values converges, often to a local maximum.
This always occurs in the homoscedastic normal case.

Of course, the algorithm can only be applied to models fγl
that actually allow maximization

in the M–step. The assumed continuity of the likelihood function implies that this is always
the case if Γ is compact. More can be said in general in the heteroscedastic case. Here Γ is the
g–fold Cartesian product of Γ0 and one maximizes the sum

∑
iw(i, l) ln fγl

(xi) separately for
each l. If Γ is (locally compact and) non–compact and if the likelihood function η 7→ fη(x)
vanishes as η approaches the Alexandrov point of Γ for all x ∈ E then the same is true for
the sum

∑
iw(i, l) ln fηl

(xi) and it is again plain that the maximum exists. In other cases one
is interested in the largest local maximum, Kiefer [16].
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2 The EMT–algorithm

2.1 A mixture model with spurious outliers and its ML criterion

We now consider a model for r regular observations and n−r “spurious” elements in a sample
space E. Spuriousness [8] applies to observations that are gross, unpredictable outliers in the
sense that they obey no statistical law. We feel that the best way of handling this idea in a
statistical (!) framework is by assuming that each outlier comes from its own population. The
following is the main assumption on the spurious outliers.

(SVo) An outlier Xi : Ω → E, i ∈ 1..n, obeys a parametric model with parameter ψi ∈ Ψi

such that the likelihood integrated w.r.t. some prior measure τi on Ψi satisfies

∫

Ψi

fXi
[x | ψi]τi( dψi) = 1, (9)

i.e., does not depend on x. We will later consider the parameters ψi as nuisances. There are
two important and sufficiently general situations where (SVo) holds.

(A) The sample space is Euclidean, E = R
d, Ψi = E, the outliers obey a location model

Xi = Ui + ψi

with some (unknown) random noise Ui : (Ω, P ) → E, and τi is Lebesgue measure on Ψi.
Indeed, in this case, the conditional Lebesgue density is fXi

[x | ψi] = fUi
(x− ψi) and, hence,

∫

Ψi

fXi
[x | ψi] dψi = 1.

(B) The parameter set Ψi is singleton and the distribution of Xi is taken as the reference
measure for its density. This case includes the idea of irregular variants “uniformly dis-
tributed” on some domain.

Each of the r regular observations Xi comes from a mixture of g populations represented
by a density of the form (5). The numbers of components, g, and of regular objects, r, are
considered fixed. They can be chosen by model selection criteria, Kéribin [15], and goodness–
of–fit techniques that are not the subject matter of this communication. We assume that all
functions fu,γ are strictly positive on E. A popular example is the homoscedastic normal
model on Euclidean d–space with parameter space Γ = R

gd × {(V, . . . , V ) | V ∈ PD(d)} ≈
R

gd × PD(d), all normal populations on Euclidean space with a common covariance matrix.

Combining regular observations and outliers, we use the set

(
1..n

r

)
×∆g−1 × Γ×

n∏

i=1

Ψi.

as the parameter set of our model with g components and n− r outliers. The set
(1..n

r

)
of all

r–element subsets of 1..n stands for the possible subsets of regular observations. Of course,
the parametrization of the mixture model is not identifiable in the strict sense, see however
the discussion in [22], Ch. 1. The density function of the ith observation for the parameter
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values R ∈
(1..n

r

)
, u = (u1, . . . , ug), γ = (γ1, . . . , γg), and ψ = (ψ1, . . . , ψn) w.r.t. a reference

measure on E is

fXi
[x | R,u, γ, ψi] =

{
fu,γ(x) as in Eqn. (5), i ∈ R,
fXi

(x) as in Eqn. (9), i /∈ R.

We assume that the sequence of observations (Xi)
n
i=1 is statistically independent but not

necessarily i.i.d. unless there are no outliers, n = r. By the product formula, the likelihood
for the data set S = (x1, . . . , xn) is

fX [S | R,u, γ, ψ] =
∏

i∈R

fu,γ(xi)
∏

i/∈R

fXi
[xi | ψi].

Considering the parameters ψi of the outliers nuisances to be integrated out w.r.t. to the prior
measures τi we obtain by Eqn. (9) the integrated likelihood

fX [R | u, γ] =
∏

i∈R

fu,γ(xi) =
∏

i∈R

( ∑

j

ujfγj
(xi)

)
, (10)

the ML–criterion to be optimized w.r.t. the parameters R ∈
(
1..n
r

)
, u ∈ ∆g−1, and γ ∈ Γ. By

the principle of dynamic optimization, the ML–estimator of the parameters is computed from

argmax
R

max
u,γ

ln fX [R | u, γ] = argmax
R

ln fX [R | u∗, γ∗], (11)

u∗ and γ∗ being the m.l.e.’s of u and γ w.r.t. R.

2.2 The EMT–step

Our next aim is the adaptation of the EM–algorithm to the ML–criterion (10). We extend
the EM–algorithm to contaminated mixtures proposing the following EMT–step, a suite of
an E–, an M–, and a T–step. The E– and M–steps are carried out w.r.t. an r–element subset
of 1..n and the trimming step selects the r elements that best fit the new parameters as the
new regular elements.

Input: A subset R ⊆ S of r elements, mixing rates (u1, . . . , ug), and population parame-
ters γ1, . . . , γg.

Output: A subset, mixing rates, and population parameters with improved criterion (10),
cf. Proposition 2.3.

E–step: compute the weights w(x, j) =
ujfγj

(x)P
l ulfγl

(x) , x ∈ R, j ∈ 1..g;

M–step: set unew,j = 1
r

∑
x∈R w(x, j), 1 ≤ j ≤ g, and maximize

∑
j

∑
x∈Rw(x, j) ln fγj

(x)
w.r.t. γ ∈ Γ to obtain γnew; (in the heteroscedastic case, each sum∑

x∈R w(x, j) ln fγj
(x), j ∈ 1..g, may be maximized separately)

T–step: define Rnew to be the set of objects x ∈ S with the r largest values of
funew,γnew

(x) =
∑

j unew,jfγnew,j
(x).
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The iteration of EMT–steps with a randomly or deliberately chosen initial stochastic matrix
w(0) and an r–element subset R(0) input to the M–step is the EMT–algorithm. It is again
iterative and alternating running as follows

(R(0),w(0))
M–step−→ (u(1), γ(1))

T–step−→ (R(1),u(1), γ(1))
E–step−→ (R(1),w(1))

M–step−→ (u(2), γ(2))
T–step−→ · · · .

The rows of the initial weight matrix may be chosen uniformly from the (g − 1)–dimensional
unit simplex ∆g−1. An efficient procedure is OSIMP, see Fishman [6]. An alternative are
randomly sampled unit vectors. If components are sufficiently separated the algorithm may
also be started with parameters (u(0), γ(0)) from a suitable clustering algorithm. An elegant
procedure for uniform generation of a subset R(0) appears in Knuth [17], p.136, ff. Since EMT
does not necessarily find a global maximum in one sweep, the algorithm has to be replicated
several or many times with different starting configurations in order to reach a high value of
the integrated likelihood (10). The remarks after the statement of the EM–algorithm apply
also to the EMT.

The EMT–step has two parameters, the number g of components and the number of regular
data points r. Both may be chosen by validation techniques based on goodness of fit.

The following proposition discusses monotonicity of the successive values of the target func-
tion.

2.3 Proposition

Let the statistical model be as described at the beginning of this section.

(a) An EMT–step improves the integrated likelihood fX [R | u, γ] in the sense ≥.

(b) If (R,u, γ) is optimal then so is (Rnew,unew, γnew).

Proof. (a) Under the assumptions made, the fact that fX [R | u, γ] ≤ fX [x | R,unew, γnew] is
the well–known property of monotonicity of the EM–algorithm applied to the objects in R,
see [4], p. 8. Moreover,

ln fX [R | unew, γnew] =
∑

i∈R

ln
∑

l

unew,lfγnew,l
(xi) ≤

∑

i∈Rnew

ln
∑

l

unew,lfγnew,l
(xi)

= ln fX [Rnew | unew, γnew]

by maximality of the objects in Rnew.

(b) follows from the increasing property (a). �

We say that (R,u, γ) is a halting point of the EMT–step if the ML–criterion (10) remains
unchanged after an EMT–step starting from it. According to Proposition 2.3, an ML–estimate
is a halting point. A critical point of a differential function is a point where its gradient
vanishes. A face of the simplex ∆g−1 is the convex combination of a non-empty set of unit
vectors in R

g. A subset F ⊆ ∆g−1 is a face if it is the non-empty intersection of ∆g−1 with
some subspace L of R

g such that ∆g−1 \L is convex or again if it is the set of points in ∆g−1

where some linear form on R
g assumes its minimum. To each non-empty subset M ⊆ ∆g−1

there is a smallest face that contains it, the face generated by M . The face generated by a
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subset that contains an interior point of the simplex is the whole simplex. The face generated
by one point contains this point in its interior. (This is also true if the point is an extreme
point of the simplex.)

In the sequel we discuss the relationships between limit, halting, fixed, and critical points.
We need the H–functional (3) w.r.t. an r–element subset R ⊆ 1..n,

HR((u, γ), (v, η)) = ln fX [R | u, γ]−DR((u, γ), (v, η)),

where DR((u, γ), (v, η)) is the Kullback–Leibler divergence of the complete model w.r.t. R
conditional on [Φ = R].

2.4 Proposition

Assume that the sequence of successive outputs of the EMT algorithm converges with limit
(R∗,u∗, γ∗). Then (R∗,u∗, γ∗) is a halting point of the EMT–step.

Proof. By convergence of the sequence (Rt,ut, γt) to (R∗,u∗, γ∗), we have Rt = R∗ for
eventually all t. It is, therefore, sufficient to consider Rt fixed. Abbreviate θ = (u, γ), ϑt =
(ut, γt), and ϑ∗ = (u∗, γ∗). From HRt(ϑt, θ) ≤ HRt(ϑt, ϑt+1) for all θ we infer

HRt(ϑ
∗, θ) = lim

t→∞
HRt(ϑt, θ) ≤ lim

t→∞
HRt(ϑt, ϑt+1) = HRt(ϑ

∗, ϑ∗).

This is the claim. �

2.5 Proposition

If (R∗,u∗, γ∗) is a halting point of the EMT–step then (u∗, γ∗) is a fixed point of HR∗ (see
Section 1.3).

Proof. Let us put ϑ∗ = (u∗, γ∗) and ϑnew = (unew, γnew), the output of the EMT–step starting
from (R∗,u∗, γ∗). If (R∗,u∗, γ∗) is a halting point of the EMT–step then

fX [R∗ | ϑ∗] = fX [R∗ | ϑnew] = fX [Rnew | ϑnew]. (12)

The first equality implies

HR∗(ϑ∗, ϑ∗) = ln fX [R∗ | ϑ∗] = ln fX [R∗ | ϑnew] = HR∗(ϑ∗, ϑnew) +DR∗(ϑ∗, ϑnew)

≥ HR∗(ϑ∗, ϑnew),

i.e., ϑ∗ is a fixed point of HR∗ . �

2.6 Proposition

Assume that Γ is an open subset of some Euclidean space, that fγ(x) is differentiable w.r.t.
γ for all x, and that the (conditional) Kullback–Leibler divergence DR(ϑ, θ) = D(νϑ[· | Φ =
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R], νθ[· | Φ = R]) is differentiable w.r.t. θ at each point of the diagonal θ = ϑ for all R. Then
any halting point (R∗,u∗, γ∗) of the EMT–step has the following properties.

(i) γ∗ is a critical point of the observed likelihood function fX [R∗ | u∗, γ] as a function of γ.

(ii) The vector of mixing rates u∗ is a maximum of the observed likelihood function
fX [R∗ | u, γ∗] as a function of u on the face generated by u∗.

(iii) If u∗ is an interior point of the simplex then it is a maximum of the function u→ fX [R∗ |
u, γ∗]. If, moreover, each observation xi has a strictly positive density w.r.t. (u∗, γ∗) and if
the g vectors

(
fγ∗,1(xi)

)
i
, . . . ,

(
fγ∗,g(xi)

)
i

are affine independent then it is the only maximum.

(iv) R∗ is consistent with the output (unew, γnew) of the EM–step starting from (R∗,u∗, γ∗).

Proof. Let ϑ∗ and ϑnew be as defined at the beginning of the proof of Proposition 2.5. From
that proposition, we know already that ϑ∗ is a fixed point of HR∗ . The point u∗ is interior
to the face F generated by it. Therefore, ϑ∗ lies in the interior of F × Γ. The fixed point
ϑ∗ maximizes the H–functional θ 7→ HR∗(ϑ∗, θ) and minimizes the (conditional) Kullback–
Leibler divergence θ 7→ DR∗(ϑ∗, θ) since it vanishes there. By interiority of ϑ∗, the gradients
of both functions restricted to F ×Γ vanish at this point. Thus, the gradient of the restriction
to F × Γ of the observed log-likelihood

θ 7→ ln fX [R∗ | θ] = HR∗(ϑ∗, θ) +DR∗(ϑ∗, θ),

too, vanishes at ϑ∗, this representation being valid at least near θ = ϑ∗. This completes claim
(i).

Nothing has to be shown for claim (ii) if u∗ is an extreme point of the simplex. Otherwise,
note that

ln fX [R∗ | θ] =
∑

i∈R

ln
∑

j

ujfγ,j(xi)

is of the form
∑

i∈R ln(Au)i with Ai,j = fγ,j(xi). Claim (ii) now follows from concavity A.1(a)
of this function restricted to the mixing parameters and from the vanishing of the gradient.

If u∗ is an interior point then its generated face is the whole simplex and the first claim of
(iii) follows from (ii). The second claim follows from Lemma A.1(b).

Claim (iv) follows directly from the second equality in Eqn. (12). �

It is often the case that the EMT–algorithm converges. The following corollary, a consequence
of Propositions 2.4, 2.5, and 2.6, discusses the limit.

2.7 Corollary

Let the assumptions of Proposition 2.6 hold and assume that the sequence of successive out-
puts of the EMT algorithm converges with limit (R∗,u∗, γ∗). Then (i)–(iv) of Proposition 2.6
hold.
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log-likelihood u m v

–8.39821 0.5, 0.25, 0.25 –3.00000, 2.07741, 3.92258 0.57442

–8.44833 0.5, 0.245256, 0.254744 –2.99999, 2.99992, 3.00005 1.00007

–10.2809 1–α–β, α, β 0, 0, 0 10

Table 1: Limit points for the data set –4,–2,2,4 and the homoscedastic normal model with
three components.

2.8 Remarks

(a) Even if the ML–estimate exists the likelihood values along the EMT–algorithm need not
converge to the maximum. Here is a simple, one-dimensional, normal example. The data set
consists of the four points −4,−2, 2, 4. It has two obvious clusters. Running the EM algorithm
(no outliers) with the homoscedastic model and g = 3 we find the limits shown in Table 1.
The first limit point is the global maximum. It essentially uses the two negative observations
for one component and each of the two positive ones for the remaining components. The
second limit point corresponds to the natural solution with two components with centers
close to −3 and 3. One of the components is split in two very similar parts. The limit point
seems to be a local maximum which is very flat in two directions, two eigenvalues of the
Hessian being close to zero. The last line in the table describes a two–dimensional manifold of
limit points with equal log–likelihoods. The positive semi–definite Hessian is the same at each
point and has four vanishing eigenvalues. In the first two lines, the mixing rates are unique
by Proposition 2.6(iii). However, each of the first two lines induces a number of symmetrical,
equivalent solutions.

(b) Modifications to the M–step are possible. It is not necessary to go to the maximum in the
M–step. Each improvement in the M–step or in the T–step improves the observed likelihood.

(c) If Γ is not open as required in Proposition 2.6 then (u∗, γ∗) is still a fixed point as in the first
part of Proposition 2.6(i) but it is only true that directional derivatives of γ 7→ fX [R∗ | u∗, γ]
at γ∗ must be ≤ 0 in all interior directions.

2.9 Three normal cases

Eqn. (8) gives an analytical expression for the maximum in the M–step w.r.t. the vector u

of mixing rates. It is well known that the population parameters ηl = (ml, Vl), too, can be
expressed by formulae if populations are normal. The same can of course be said about the
M–step in the EMT–algorithm.

The normal case needs some more notation. Here, E = R
d is d–dimensional Euclidean space

so that S ⊆ R
nd. The symbol Nm,V designates the d–variate normal distribution with mean

m and covariance matrix V and also its Lebesgue density. Given a subset T ⊆ S, the symbols
m(T ), W (T ), and V (T ) designate its mean vector, its SSP–matrix, and its sample covariance
matrix, respectively. We will mainly need weighted mean vectors and weighted pooled SSP–
and covariance matrices w.r.t. a stochastic weight matrix w = (w(x, j))x∈S,j∈1..g,

∑
j w(x, j) =

11



1 for all x, and a subset T ⊆ S. With the abbreviation

wj(T ) =
∑

x∈T

w(x, j)

they are defined respectively as

mw,j(T ) =
1

wj(T )

∑

x∈T

w(x, j)x,

Ww,j(T ) =
∑

x∈T

w(x, j)(x −mw,j(T ))(x−mw,j(T ))T ,

Vw,j(T ) =
1

wj(T )

∑

x∈T

w(x, j)(x −mw,j(T ))(x −mw,j(T ))T .

The mean value is put to zero and the covariance matrix to the identity matrix if wj(T )
vanishes.

We assume throughout that the data points S are in general position. This notion has dif-
ferent meanings for the three customary normal sub–populations specified by the shape of
the covariance matrix: spherical, diagonal, or full. In the spherical case it means pairwise
difference of all data points, in the diagonal case pairwise difference of the kth entries for
all k ∈ 1..d, and in the full case affine independence of any d + 1 points in S. We make the
standard assumption r ≥ g+ 1 in the “spherical” and “diagonal” cases and r ≥ gd+ 1 in the
“full” case. General position then guarantees that all weighted variances are strictly positive
and all weighted covariance matrices are positive definite in the homoscedastic case. Indeed,
e.g. in the “full” case, let {R1, . . . , Rg} be the MAP–partition of R associated with the weight
matrix (w(x, j))x∈R,j∈1..g , i.e., x ∈ Rj ⇔ j = argmax` w(x, `). Then

w(x, j) ≥ 1

g
, x ∈ Rj, (13)

and, hence,

Ww,j(T ) � 1

g

∑

j

∑

x∈Rj

(x−mw,j(T ))(x−mw,j(T ))T � 0

since at least one cluster Rj contains at least d+1 elements by the pigeon hole principle. With
the notation above and in the homoscedastic case, the parameter estimates in the M–step
with input w and R are

mj = mw,j(R) and (14)

V =
∑

j

ujVw,j(R) =
1

r

g∑

j=1

∑

x∈R

w(x, j)(x −mj)(x−mj)
T , (full) (15)

vk = Vk,k =
1

r

g∑

j=1

∑

x∈R

w(x, j)(xk −mj,k)
2, (diagonal) (16)

v =
1

d

∑

k

vk =
1

rd

g∑

j=1

∑

x∈R

w(x, j)
∑

k

(xk −mj,k)
2. (spherical) (17)

12



Furthermore, if (u,m, V ) is a fixed point of the EM–algorithm w.r.t. R, e.g., if (R,u,m, V )
is a halting point of EMT, see Proposition 2.5, then the criterion has the representation

log f [R | u,m, V ] (18)

=cr,d + r

g∑

j=1

uj log uj −
g∑

j=1

∑

x∈R

w(x, j) log w(x, j) −





r
2 log detV, (full)
r
2

∑d
k=1 log vk, (diagonal)

dr
2 log v, (spherical)

where cr,d = −dr
2 (1 + log 2π) and w(x, j) =

ujNmj,V (x)P
l ulNml,V (x) , see Appendix A.2.

3 Universal breakdown points

3.1 Breakdown points

The finite–sample breakdown value of an estimator, Hodges [13] and Donoho and Huber [5],
measures the minimum fraction of gross outliers that can completely spoil the estimate. Two
types of breakdown points are customary, the addition and the replacement breakdown point.
The former refers to the addition of n − r outliers to a data set of r regular observations
and the latter to n − r replacements in a data set of n regular observations. The former is
technically simpler since we have a fixed set of regular observations at hand, but there is the
disadvantage that we need two estimators, one for r data and one for n data. By contrast,
in the latter we have to consider all

(
n
r

)
possible replacements of n− r observations but need

only one estimator for n objects. We deal with replacements.

Let δ : A → Θ an estimator on its natural domain of definition A ⊆ En of admissible data
sets of length n, e.g., general position for the m.l.e. under normal assumptions. Given m ≤ n,
we say that M ∈ A is an m–modification of S ∈ A if it arises from S by modifying at most
m entries in an (admissible but otherwise) arbitrary way. An estimator δ “breaks down with
S under m replacements” if the set

{δ(M) |M is m–modification of S} ⊆ Θ

is not relatively compact in Θ. Of course, there is no breakdown if Θ is compact. The individual

breakdown point for the data set S is the number

β(δ, S) := min
1≤m≤n

{m
n
| δ breaks down with S under m replacements

}
.

It is the minimal fraction of replacements in S that may cause δ to break down. The individual
breakdown point is not an interesting concept per se since it depends on a single data set.
It tells the statistician how many gross outliers the data set M under his or her study may
contain without causing excessive damage if the imaginary “clean” data set that should have
been observed were S. Now let K ⊆ A be some subclass of admissible data sets. The restricted

breakdown point [8] of δ w.r.t. K is

β(δ,K) := min
S∈K

β(δ, S).

13



The restricted breakdown point depends only on δ and the subclass K. It provides information
about the robustness of δ if the hypothetic “clean” data set S that should have been observed
instead of the contaminated data set M had been a member of K. Finally, the universal

breakdown point is Donoho and Huber’s

β(δ) = β(δ,A).

This concept depends solely on the estimator. The restricted breakdown value may be seen
as a relaxed version of it. We have the estimates

β(δ) ≤ β(δ,K) ≤ β(δ, S), S ∈ K.

We deal here with breakdown points of EMT for the means and the common covariance
matrix. In the former case, the relatively compact subsets of the parameter space R

d are
the bounded sets. In the latter, the parameter space is the set of all positive–definite d× d–
matrices and a subset is relatively compact if the eigenvalues of its members are bounded
and bounded away from zero. This is equivalent to saying that the subset is bounded above
and below by positive–definite matrices in the positive–definite (or Löwner) ordering � on
the vector space of symmetric matrices.

We next show that the EMT–algorithm robustly estimates the common covariance matrix of
the homoscedastic normal models described in Sect. 2.9 and compute the universal breakdown
point.

3.2 Theorem (Universal breakdown point of EMT for the pooled covariance matrix)

Assume 2r ≥ n + 2g in the “spherical” and “diagonal” cases and 2r ≥ n + g(d + 1) in the
“full” case. (Note that these assumptions imply the standard assumptions r ≥ g + 1 in the
“spherical” and “diagonal” cases and r ≥ gd+ 1 in the “full” case.)

(a) If at most n− r+ g− 1 points of the data set are replaced in an arbitrary but admissible
way then the pooled covariance matrix output from an M–step remains bounded below by a
positive–definite matrix.

(b) If at most n− r+ g− 1 points of the data set are replaced in an arbitrary but admissible
way then the optimal covariance matrix remains bounded above by a positive–definite matrix.

(c) Given any positive number K, n − r + g points may be replaced in such a way that the
largest eigenvalue of the pooled covariance matrix output from any M–step exceeds K.

(d) The breakdown value of the pooled scatter matrix is

βCov =
n− r + g

n
.

Proof. We give proofs in the “full” case; the other cases are similar.

(a) We first note that, by general position, there is ε > 0 so that the SSP matrix of any
d+ 1 points of the original data S dominates εId, where Id is the d–dimensional unit matrix.
By assumption, any r–element subset z1, . . . , zr of the modified data set contains at least
r − (n− r + g − 1) = 2r − n− g + 1 ≥ gd + 1 original points. Consider the MAP–clustering
(R1, . . . , Rg) of z1, . . . , zr associated with the weight matrix w input to the M–step. By the
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pigeon hole principle, some cluster, say Rl, contains ≥ d+1 original elements, say x1, . . . , xd+1.
Let mj and V be the population parameters output from the M–step. We use (15), (13) and
Steiner’s formula to estimate

V =
1

r

g∑

j=1

r∑

i=1

w(i, j)(zi −mj)(zi −mj)
T � 1

r

∑

i∈Rl

w(i, l)(zi −ml)(zi −ml)
T

� 1

gr

∑

i≤d+1

(xi −ml)(xi −ml)
T � ε

gr
Id.

(b) We first show that, irrespective of the n − r + g − 1 replacements, the criterion of some
admissible solution exceeds some constant value. The constant is determined by a simple
solution that is sufficient for our purpose. We choose as R the remaining n− (n− r+ g−1) =
r − g + 1 original observations and g − 1 replacements. Without loss of generality, let the
original data be x1, . . . , xr−g+1 and the replacements y1, . . . , yg−1. Let u1 = · · · = ug = 1

g ,
m1 = 0, mj = yj−1, j ∈ 2..g, and V = Id. The integrated likelihood (10) is

r−g+1∏

i=1

1

g

{
(2π)−d/2e−‖xi‖

2/2 +

g−1∑

j=1

(2π)−d/2e−‖xi−yj‖
2/2

}

×
g−1∏

i=1

1

g

{
(2π)−d/2e−‖yi‖2/2 +

g−1∑

j=1

(2π)−d/2e−‖yi−yj‖2/2
}

≥
r−g+1∏

i=1

1

g

{
(2π)−d/2e−‖xi‖2/2

} g−1∏

i=1

1

g
(2π)−d/2

≥(2π)−rd/2g−re−‖S‖2/2 = c,

a positive constant.

Now let (z1, . . . , zn) be the modified data set. The likelihood of its optimal solution
(R∗,u∗,m∗, V ∗), too, exceeds the constant c and we have

c ≤
∏

i∈R∗

g∑

j=1

u∗j
1√

det 2πV ∗
e−

1

2
(zi−m∗

j )T (V ∗)−1(zi−m∗

j ) ≤
∏

i∈R∗

g∑

j=1

u∗j
1√

det 2πV ∗
= (det 2πV ∗)−r/2.

Hence, det V ∗ ≤ const and the claim follows from Part (a).

(c) Let (z1, . . . , zn) be the data set modified by n− r + g replacements. Let R be the MAP–
partition of the r–element subset R ⊆ 1..n associated with the matrix w input to the M–step.
By assumption, R contains at least g replacements. Hence, either one cluster contains two
replacements or each cluster contains at least one replacement, in particular some cluster with
≥ d + 1 elements. In any case there is an cluster of size ≥ 2 containing a replacement z and
another element y. Let mj and V be the population parameters output from the M–step. We
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have by (15)

V =
1

r

g∑

j=1

r∑

i=1

w(i, j)(zi −mj)(zi −mj)
T � 1

gr

(
(z −ml)(z −ml)

T + (y −ml)(y −ml)
T
)

� 1

gr

(
(z − 1

2
(z + y))(z − 1

2
(z + y))T + (y − 1

2
(z + y))(y − 1

2
(z + y))T

)

=
1

2gr
(z − y)(z − y)T .

Thus, tr V ≥ 1
2gr‖z−y‖2. This proves the claim since the replacements may be chosen in such

a way as to be far away from all original data and from each other.

Claim (d) is immediate from (a)–(c). �

3.3 Corollary

(a) The maximal number of outliers that the optimal pooled scatter matrix output from the
EMT–algorithm can resist is

⌊n
2

⌋
(spherical and diagonal),

⌊n− g(d− 1)

2

⌋
(full).

The parameter r has to be set to
⌈

n
2

⌉
+ g and

⌈n+g(d+1)
2

⌉
, respectively.

(b) The asymptotic breakdown point in each case is 1/2.

Proof. (a) We are asking for the largest integer n− r + g under the constraint 2r ≥ n+ 2g
(“spherical” and “diagonal” cases) and 2r ≥ n+ g(d + 1) (“full” case). This proves Part (a)
and (b) is immediate. �

Part (b) of the corollary says that the EMT–algorithm attains for the pooled covariance the
optimal asymptotic breakdown value of a translation equivariant estimator, Lopuhaä and
Rousseeuw [18].

In view of the universal breakdown point of the location parameters we first state a lemma.

3.4 Lemma

Let 1 ≤ q < r, let R = {x1, . . . , xr−q, y1, . . . , yq} consist of r − q original data points and q
replacements, and let (u,m, V ) be parameters computed in the M–step for R, e.g. a fixed
point. Then

max
j
‖mj‖ −→ ∞ as ‖y1‖ → ∞ such that {yi − y1 | 2 ≤ i ≤ q} remains bounded.

Proof. Let w(·, j) be the weights from which the parameters are computed. Eqn. (14) implies

∑

j

mj

( r−q∑

i=1

w(xi, j) +

q∑

i=1

w(yi, j)
)

=

r−q∑

i=1

xi +

q∑

i=1

yi =

r−q∑

i=1

xi + qy1 +

q∑

i=1

(yi − y1)

and the claim follows since the quantities in parentheses on the left side remain bounded. 2
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3.5 Theorem (Universal breakdown point of EMT for the means)

(a) If g+1 ≤ r < n in the “spherical” and “diagonal” cases and gd+2 ≤ r < n in the “full”
case1 then all means remain bounded by a constant that depends only on the data set
as one observation is arbitrarily replaced.

(b) If g ≥ 2 and if r ≥ g + 2 then there is a data set such that one mean breaks down as
two particular observations are suitable replaced.

(c) If g + 1 ≤ r < n in the “spherical” and “diagonal” cases and gd + 2 ≤ r < n in the
“full” case then βmean(n, r, g) = 2

n .

Proof. We restrict ourselves to proving the case of full covariance matrices, the other cases
being similar.

(a) Let S = (x1, . . . , xn) be any data set and let M = (x1, . . . , xn−1, y) be its modification
by one replacement y. We show that the optimal solution (R̃, ũ, m̃, Ṽ ) for M with r < n
under the condition that y is not discarded is inferior to some solution which discards y
if y is far away. Let deV denote the Mahalanobis distance induced by Ṽ , i.e., deV (u, v) =√

(u− v)T
(
Ṽ

)−1
(u− v), let deV (u, S) = minv∈S deV (u, v) and deV (S) = maxu,v∈S deV (u, v) de-

note the distance from u to S and the diameter of S, respectively, w.r.t. d eV .

Without loss of generality, R̃ = (x1, . . . , xr−1, y). Let R = (x1, . . . , xr) and let

mj =

{
xr, if deV (m̃j , S) > deV (S),

m̃j, otherwise.

We now show that the solution (R̃, ũ, m̃, Ṽ ) is inferior to (R, ũ,m, Ṽ ) if deV (y, S) > 4deV (S).
Comparing the integrated likelihood of the former

( r−1∏

i=1

g∑

j=1

ũjN emj ,eV (xi)
) g∑

j=1

ũjN emj ,eV (y)

with that of the latter

( r−1∏

i=1

g∑

j=1

ũjNmj ,eV (xi)
) g∑

j=1

ũjNmj ,eV (xr),

we se that it is sufficient to show deV (xi, xr) < deV (xi, m̃j), i < r, if j is such that deV (m̃j, S) >
deV (S) and deV (xr, m̃j) < deV (y, m̃j) in the opposite case.

Now, if deV (m̃j , S) > deV (S) then deV (xi, xr) ≤ deV (S) < deV (m̃j, S) ≤ deV (xi, m̃j); if
deV (m̃j , S) ≤ deV (S) then

deV (y, m̃j) ≥deV (y, S)− deV (S)− deV (m̃j , S) > 3deV (S)− deV (m̃j, S)

≥deV (S) + deV (m̃j , S) ≥ deV (xr, m̃j).

1if d = 1 then g + 1 ≤ r < n is of course sufficient
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In order to prove that the means remain bounded, we still have to prove that the locations
of the replacement y where it is not necessarily discarded are bounded by a constant that
depends only on S. (Note that Ṽ and, hence, the distance deV depend on y!) In other words,
we have to show that the set {y | deV (y, S) ≤ 4deV (S)} is bounded by a constant that depends

only on S. To this end we next show that Ṽ is bounded below and above by positive–definite
matrices L and U that depend only on S, g, and r.

Indeed, let (R̃1, . . . , R̃g) denote the MAP–clustering of R̃ w.r.t. the optimal parameters. Since

r ≥ gd+ 2, there is k such that R̃k contains at least d+ 1 original elements. We have

rṼ �
g∑

j=1

r−1∑

i=1

w(xi, j)(xi − m̃j)(xi − m̃j)
T � 1

g

∑

x∈ eRk∩S

(x− m̃k)(x− m̃k)
T

�1

g
W (R̃k ∩ S).

We may thus put L = 1
grW (R̃k ∩ S).

Furthermore, the solution (R̃, ũ, m̃, Ṽ ) is superior to
(
R̃,

(
1
g , . . . ,

1
g

)
, (0, . . . , 0, y), Id

)
, i.e.,

f [R̃ | (1/g, . . . , 1/g), (0, . . . , 0, y), Id] ≤ f [R̃ | ũ, m̃, Ṽ ] ≤ cr,d −
r

2
log det Ṽ .

by (18) and Lemma A.5. On the other hand,

f [R̃ | (1/g, . . . , 1/g), (0, . . . , 0, y), Id]

=g−r
∏

i<r

(∑

j<g

N0,Id
(xi) +Ny,Id

(xi)
)( ∑

j<g

N0,Id
(y) +Ny,Id

(y)
)

≥g−r
( ∏

i<r

∑

j<g

N0,Id
(xi)

)
N0,Id

(0),

a quantity that does not depend on y. Therefore, det Ṽ is bounded above by a constant which
depends only on S, g and r. Together with lower boundedness this shows upper boundedness
by a positive–definite matrix U .

Denoting the Mahalanobis distances w.r.t. L and U by dL and dU , respectively, the claim
finally follows from

dU (y, x1) ≤ deV (y, x1) ≤ deV (y, S) + deV (S) ≤ 5deV (S) ≤ 5dL(S).

(b) We proceed in several steps.

(α) Construction of data sets S and M :

Let F := {x1, . . . , xr−g} be a set of data points in general position. We control the remainder
of the data set S by a constant K1 > 0 and the replacements by K2 > 0. Both constants are
specified later. Using inductively Lemma A.4(a), we add points z1, . . . , zn−r+g−2 to F such
that

(i) ‖zl − zk‖ ≥ K1 for all l 6= k;

(ii) ‖xi − zk‖ ≥ K1 for all i ∈ 1..(r − g) and all k ∈ 1..(n− r + g − 2);
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(iii) detW (H) ≥ K1 for all H ∈
(F∪{z1,...,zn−r+g−2}

d+1

)
that contain at least one zk.

Note that (iii) implies general position of the set F ∪ {z1, . . . , zn−r+g−2}. The data set S is
completed by two arbitrary points q1, q2 in general position. In order to obtain our modified
data set

M := F ∪ {z1, . . . , zn−r+g−2} ∪ {y1, y2}

we use Lemma A.4(b) replacing the two points q1 and q2 with a twin pair y1 6= y2 such that

(iv) ‖y1 − y2‖ ≤ 1;

(v) ‖u− yk‖ ≥ K2 for all u ∈ F ∪ {z1, . . . , zn−r+g−2} and for k = 1, 2;

(vi) detW (E) ≥ K2 for all E ∈
( M
d+1

)
that contain at least one yk except for E = {y1, y2} if

d = 1.

In view of Lemma 3.4, we will show that the optimal solution does not discard the outliers
y1 and y2 if K1 is chosen large enough and as K2 →∞.

(β) The maximum of the objective function for the modified data set M is bounded below
by a constant that depends only on F , g, and r:

It is sufficient to construct a parameter set with likelihood bounded below by a function of
F , g, and r. Let R = F ∪ {y1, y2} ∪ {z1, . . . , zg−2}, let uj = 1/g, let m1 = m(F ), the usual
mean of F , m2 = y1, mj = zj−2, 3 ≤ j ≤ g, and let V = Id. We have

f [R | u,m, V ] =

r−g∏

i=1

1

g

g∑

j=1

Nmj ,Id
(xi)

2∏

i=1

1

g

g∑

j=1

Nmj ,Id
(yi)

g∏

i=3

1

g

g∑

j=1

Nmj ,Id
(zi−2)

≥g−r
r−g∏

i=1

Nm1,Id
(xi)

2∏

i=1

Nm2,Id
(yi)

g∏

i=3

Nmj ,Id
(zi−2)

≥g−r(2π)−
gd
2 e−

1

2

r−g∏

i=1

NmF ,Id
(xi) (19)

as required.

According to the combinatorial Lemma 4.2 in [8], any partition of any subset of M of size r
in g clusters has either the form

R = {{x1, . . . , xr−g}, {y1, y2}, g − 2 one–point classes from the zl
′s} or

there is a class Rj ∈ R which contains some pair {xi, yk} or some pair {zl, u}, u 6= zl.

(γ) The MAP–clustering R associated with an optimal solution cannot be of the second kind
if K1 and K2 are sufficiently large:

Choose Rj ∈ R of maximum size containing either some pair {xi, yk} or {zl, u}, u 6= zl. Let
us denote the two elements by a and b. If Rj is of size at least d + 1 then we choose d + 1
elements E ⊆ Rj containing {a, b} inferring from (iii) and (vi)

det rV ≥ det
1

g
W (Rj) ≥ det

1

g
W (E) ≥

(1

g

)d
min{K1,K2}.
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Otherwise, by the standard assumption r > gd, there exists a cluster Rl, l 6= j, of size
≥ d + 1 which contains no pair {xi, yk} and no zl. Since d ≥ #Rj ≥ 2 in this case, we have
Rl 6= {y1, y2} so that we must have Rl ⊆ F . Now

rV � 1

g

( ∑

x∈Rl

(x−ml)(x−ml) + (a−mj)(a−mj)
T + (b−mj)(b−mj)

T
)

� 1

g

(
W (Rl) +

1

2
(a− b)(a− b)T

)
,

where the last inequality follows from Steiner’s formula. From [8], Lemma A.1(b), it follows

det rV ≥ 1

gd
detW (Rl)

(
1+

1

2
(a−b)TW (Rl)

−1(a−b)
)
≥ 1

gd
detW (Rl)

(
1+

1

2λmax
‖a−b‖2

)
,

where λmax is the largest eigenvalue of W (Rl). Since Rl ⊆ F , the eigenvalues of W (Rl) do not
depend on K1 and K2. Moreover, ‖a − b‖ tends to infinity with K1 and K2. Therefore, (18)
and Lemma A.5 imply that the value of the objective function converges to 0 as K1,K2 →∞,
a contradiction to (19). This proves (γ).

Now choose K1 and K2 so large that the MAP–clustering of any optimal solution is of the first
kind. In particular, the solution does not discard the replacements. According to Lemma 3.4,
at least one mean breaks down as K2 →∞.

(c) follows from (a) and (b). 2

3.6 Remark (The case g = 1)

In the case of one component, the criterion (10) reduces to Rousseeuw’s [26] maximum co-
variant determinant, MCD, for robust estimation of location and scatter. If α < 0.5 then
its asymptotic breakdown point with parameter r = d(1 − α)ne is known to be α, see
Rousseeuw [26], p.291. This is in harmony with our result on the scatter matrix, Theorem 3.2.
For g = 1, reduction of the parameter r has the effect that breakdown occurs at a much higher
number of outliers compared with g > 1. The reason is that, in the case g > 1, the outliers
may form an own cluster if they are close to each other, thus causing one mean to be large.

For g = 1, also the EMT–algorithm is well known. The weights are all 1 so that the E–step
is trivial. The M– and T–steps reduce to Rousseeuw and Van Driessen’s [27], Theorem 1,
alternating C–step for computing the MCD.

A Appendix

A.1 Lemma

Let A ∈ R
r×g be a matrix with all entries ≥ 0.

(a) The function Ψ : ∆g−1 → R ∪ {−∞}, Ψ(u) =
∑

i ln(Au)i, is concave.

(b) If no row of A vanishes and if the g columns of A are affine independent then Ψ is real
valued and strictly concave in the interior of ∆g−1.
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Proof. (a) Each of the summands u → ln(Au)i is concave as a function with values in
R ∪ {−∞} and so is their sum.

(b) Under the first assumption of (b) each summand u → ln(Au)i is finite in the interior of
∆g−1 and so is their sum Ψ. Under the second the mapping u → Au is one to one. Hence,
if u 6= v then there is an index i such that (Au)i 6= (Av)i and, by strict concavity of the
logarithm, we have lnA

{
1
2u + 1

2v
}

i
= ln

{
1
2(Au)i + 1

2(Av)i

}
> 1

2

{
ln(Au)i + ln(Av)i

}
and

claim (b) follows. �

A.2 Proof of formula (18)

If (u,m, V ) is a fixed point then it is output from an M–step with input w(x, l) =
ulNml,V (x)Pg

j=1
ujNmj,V (x)

. We may hence compute

log f [R | u,m, V ] =
∑

x∈R

log

g∑

j=1

ujNmj ,V (x) =
∑

x∈R

log
ulNml,V (x)

w(x, l)

=
∑

x∈R

{log ul + logNml,V (x)− logw(x, l)}.

This expression does not depend on l and we continue

=
∑

l

∑

x∈R

w(x, l){log ul + logNml,V (x)− logw(x, l)}

=
∑

l

ul log ul +
∑

l

∑

x∈R

w(x, l) logNml,V (x)−
∑

l

∑

x∈R

w(x, l) logw(x, l).

It is now sufficient to insert V from Eqns. (15)–(17) and to apply standard matrix analysis
to derive (18). 2

The following lemma is of Steiner’s type. We omit its elementary proof.

A.3 Lemma

Let (x1 . . . , xm) be a data set in R
d, let w = (w1, . . . , wm) be a family of real numbers such

that w(1..m) :=
∑m

i wi > 0, let b ∈ R
d, and let mw = 1

w(1..m)

∑m
i=1wixi, the weighted mean.

Then

m∑

i=1

wi(xi − b)(xi − b)T =

m∑

i=1

wi(xi −mw)(xi −mw)T +

m∑

i=1

wi · (mw − b)(mw − b)T .

In particular,

m∑

i=1

wi(xi − b)(xi − b)T �
m∑

i=1

wi(xi −mw)(xi −mw)T .
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A.4 Lemma

Let p ≥ d, let x1, . . . , xp ∈ R
d be in general position, and let K > 0.

(a) There exists y ∈ R
d such that ‖y‖ ≥ K and detW (F ∪{y}) ≥ K for all d–element subsets

F ⊆ {x1, . . . , xp}.
(b) There exists a pair of points y1, y2 ∈ R

d, such that 0 < ‖y1 − y2‖ ≤ 1, ‖y1‖, ‖y2‖ ≥ K,
and detW (F ∪ {y1}), detW (F ∪ {y2}) ≥ K for all d–element subsets F ⊆ {x1, . . . , xp} and
detW (E ∪ {y1, y2}) ≥ K for all (d− 1)–element subsets E ⊆ {x1, . . . , xp} if d > 1.

Proof. We repeatedly use the following formula. Let A be a singular, positive, symmetric
matrix with a one–dimensional kernel and let w ∈ R

d. Then

det(A+ wwT) = (vT
Aw)2 detA′, (20)

where vA is a normalized vector in the kernel of A and where A′ is the matrix A seen as an
operator on its “own” space v⊥A . If A is the SSP–matrix W (F ) generated by a point set F
then we also write vF = vA.

(a) For any point y, the SSP–matrix of F ∪ {y} has the representation

W (F ∪ {y}) = W (F ) +
d

d+ 1
(y −mF )(y −mF )T .

The SSP–matrix W (F ) being singular, the determinant of W (F ∪ {y}) is according to (20)

detW (F ∪ {y}) =
d

d+ 1

(
vT
F (y −mF )

)2
detW ′(F ). (21)

Since there are only finitely many such subsets F there exists a vector u not parallel to any
of the hyperplanes, i.e. vT

Fu 6= 0 for all such F . Eqn. (21) shows that y = αu has the required
properties if α is sufficiently large.

(b) Let u,w ∈ R
d and let y1 = βu+ w, y2 = βu− w. By Lemma A.3, we have

W (E ∪ {y1, y2}) =W (E) +W ({y1, y2}) +
2(d − 1)

d+ 1
(m{y1,y2} −mE)(m{y1 ,y2} −mE)T

=W (E) + 2wwT +
2(d − 1)

d+ 1
(βu−mE)(βu−mE)T .

Here, W (E) + 2wwT is the SSP matrix of E ∪ {mE ±w}. A double application of Eqn. (20),
first in dimension d− 1 then in d, shows that its determinant is

detW (E ∪ {y1, y2}) =
4(d− 1)

d+ 1

(
vT
E∪{mE+w}(βu−mE)

)2
(vT

Ew)2 detW ′′(E), (22)

where W ′′(E) is the matrix W (E) seen as an operator on its own space.

Now, choose w ∈ R
d, ‖w‖ = 1/2, not parallel to any of the (d−2)–dimensional affine subspaces

spanned by d− 1 points in {x1, . . . , xp} and choose u not parallel to any of the hyperplanes
spanned by d–element subsets of {x1, . . . , xp,mE +w}. Formulae (22) and (21) show that the
points y1 and y2 defined above have the required properties if β is large enough. 2
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A.5 Lemma

If #R = r and if uj = 1
r

∑
x∈Rw(x, j), j ∈ 1..g, then

r

g∑

j=1

uj log uj −
g∑

j=1

∑

x∈R

w(x, j) log w(x, j) ≤ 0.

Proof. The inequality follows from the entropy inequality applied to the probabilities
w(x, j)/r and p(x, j) = uj/r on the set R× 1..g. 2
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[18] Hendrik P. Lopuhaä and Peter J. Rousseeuw. Breakdown points of affine equivariant estimators
of multivariate location and covariance matrices. The Annals of Statistics, 19:229–248, 1991.

[19] B. Martinet. Régularisation d’inéquation variationnelles par approximations successives. Rev.

Française d’Inform. et de Recherche Opérationnelle, 3:154–179, 1970.

[20] Geoffrey J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to Clus-

tering. Marcel Dekker, New York, 1988.

[21] Geoffrey J. McLachlan and David Peel. Robust cluster analysis via mixtures of multivariate t-
distributions. In Advances in Pattern Recognition, volume 1451 of Lecture Notes in Computer

Science, pages 658–666. Springer, 1998.

[22] Geoffrey J. McLachlan and David Peel. Finite Mixture Models. Wiley, New York etc., 2000.

[23] R.A. Redner and H.F. Walker. Mixture densities, maximum likelihood and the EM algorithm.
SIAM Rev., 26:195–239, 1984.

[24] Ralph Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM J.

Contr. Optimiz., 14:877–898, 1976.

[25] David M. Rocke and David L. Woodruff. A synthesis of outlier detection and
cluster identification. Technical report, University of California, Davis, 1999.
http://handel.cipic.ucdavis.edu/∼dmrocke/Synth5.pdf.

[26] Peter J. Rousseeuw. Multivariate estimation with high breakdown point. In Wilfried Gross-
mann, Georg Ch. Pflug, István Vincze, and Wolfgang Wertz, editors, Mathematical Statistics and

Applications, volume 8B, pages 283–297. Reidel, Dordrecht–Boston–Lancaster–Tokyo, 1985.

[27] Peter J. Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum covariance
determinant estimator. Technometrics, 41:212–223, 1999.

[28] M. J. Symons. Clustering criteria and multivariate normal mixtures. Biometrics, 37:35–43, 1981.

24


