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Abstract

We consider the integers using the language of ordered darggnded by
ternary symbols for congruence and incongruence. On thedbgjde we
extend first-order logic by bounded quantifiers. Within thé&anework we
describe a weak quantifier elimination procedure for umataly nonlinear
formulas. Weak quantifier elimination means that the reguitssibly con-
tain bounded quantifiers. For fixed choices of parametersetheunded
guantifiers can be expanded into finite disjunctions or aactjons. In uni-
variately nonlinear formulas all congruences and incoegces are linear
and their modulus must not contain any quantified variableother atomic
formulas are linear or contain only one quantified variaiMieich then may
occur with arbitrary degrees. Our methods difecently implemented and
publicly available within the computer logic syste®eDLOG, which is part
of REDUCE. Various application examples demonstrate the applitalof
our new method and its implementation.
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1 Introduction

After the fundamental work of Presburger [Pre29] there lesnlronsiderable re-
search on Presburger arithmetic, which is the additiverthebthe integers with
ordering and congruences. The largest part of this rese@asiconcerned with
complexity issues and with decidability [Coo72, FR74, FRIFR79, vzGS78,
Ber77, Ber80]. Weispfenning [Wei90, Wei97a] was the first @ho was explic-
itly interested in quantifier elimination as such in conttasising it as a technique
for decision. His quantifier elimination procedures arplyriexponential, which
is known to be optimal [FR74]. He managed, however, to optligrdecrease that
complexity by one exponential step to doubly exponentiahgishe following
technical trick: certain systematic disjunctions ocawgrduring the elimination
process are not written down explicitly. Instead one usgd,bidisjunction) and
/\ (conjunction) operators with an index variable runningroadinite range of
integers. It is important to understand that at any timedleg operators could
be expanded such that one obtains a regular first-order faratuhe price of
considerably increasing the size. Independently, Wemspig and others have
developed virtual substitution techniques for quantiflenimation in various the-
ories starting with the reals and including also valued §e&ldd Boolean algebras
[Wei88, LW93, Wei97h, Stu00, SS03].

In a recent publication [LS06] the authors of the presenepapmbined the
two research areas by presenting integer quantifier eliomavithin the frame-
work of virtual substitution. Furthermore, they extendedttframework in order
to cover a considerable generalization of Presburgermaetic admitting as co-
efficients arbitrary polynomials in the parameters, i.e., thguantified variables.
This extension is called thiell linear theory of the integerslit perfectly corre-
sponds to what is referred to as linear quantifier elimimatar the reals or for
valued fields [LW93, Stu00]. Recall that in regular Presku@yithmetic, in con-
trast, all coéficients must be numbers. Thefdrence vanishes when considering
decision problems. It is quite clear that the full lineardheof the integers does
not admit quantifier elimination in the traditional sensastéad one useseak
guantifier elimination This does not necessarily deliver quantifier-free equiva-
lents but formulas that possibly contain sobminded quantifiersFor this, one
extends the language of logic by two additional quantifigs, and[ . ,. Here
k is a variable, ang is a formula not containing any quantifier. The semantics of
the new quantifiers is defined as follows:

| |e iff 3k@Bre). []eo iff vk(f— o). (1)
k:p k.p

The quantifiet |,. , is called arexistential bounded quantifiéiithe solution set of
p wrt. k is finite for all interpretations of all other variables. Widhe same con-
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dition[],. , is called auniversal bounded quantifieBuch formulag are calledc-
bounds. Formulas containing no quantifiers at all are caliectly quantifier-free
Formulas containing exclusively bounded quantifiers alledaeakly quantifier-
free The choice of notation obviously resembles Weispfensiigg disjunction
and conjunction operators. In general, however, boundeatdiers can be ex-
plicitly expanded only for fixed choices of all parameterswcing therein.

In this paper, we introduce weak quantifier elimination fasudbset of first-
order formulas, which considerably extends the full lingeory of the integers
discussed in [LS06]: Consider a formuawith parameters, ...,a.. Let @
contain quantifier®s, ..., Q, with quantified variablex,, ..., x,, where each
occurrence of any of our new quantifiers is in fact a boundexhtifier. Assume
furthermore that all right hand sides of equations, ineitjgal congruences, and
incongruences i are 0, which can always be achieved by obvious equivalence
transformations. Then we are able to eliminate frorall the regular quantifiers
provided thatp satisfies the following requirements:

(U1) None of the quantified variables, ..., x, occurs within moduli of congru-
ences or incongruences. Note, however, that the moduli reagriatrary
polynomials inay, ... ,a,.

(U,) Considering the left hand side terms of congruences arahgrciences as
polynomials inx4, ..., x,, over the cofficient ringZ[ay, ..., a,] each such
term has a total degree less than or equal to 1.

(U3) Considering the left hand side terms of equations and aléos as poly-

nomials inxq, ..., x,, over the cofficient ringZ[ay, . . ., a,] each such term
Is either a nonlinear univariate polynomial or has a totgrde less than or
equal to 1.

We call formulasg satisfying these three conditionsivariately nonlinear If
especially in (J) every single left-hand side term matches the second da=e, t
@ is a linear formula, and we are in the situation discussed 396]. Thus note
that according to our definition, every linear formula issal®ivariately nonlinear.

Accordingly, we refer to atomic subformulas@tthe left hand sides of which
match () or the second case in §laslinear atomic formulagwrt. x4, ..., xy).
Those matching the first case in {JUare calledsuperlinear univariate atomic
formulas(wrt. x4, ..., x;).

As an example, consider the following formula, which is @amigtely nonlin-
ear.

Vydx(ax —y < OAX? + x +a > 0). (2)

The atomic formulazx — y < 0 is linear, and the atomic formudg + x + a > 0
Is superlinear univariate.



As within the framework of [LS06], the elimination of regulguantifiers pos-
sibly introduces several new bounded quantifiers. It iswiotthy that in contrast
to similar elimination procedures for higher degrees okerreals [Wei97b], we
can positively decide by inspection of the original inpudttive are able to elimi-
nateall present regular quantifiers.

The plan of the paper is as follows: Section 2 recalls some lakginitions
and results from [LS06] and generalizes these to our extefrdenework here.
In Section 3 we formulate and prove our elimination theor&ection 4 gives an
overview of our implementation iREDLOG and discusses various computation
examples in order to give an idea about possible applicasnwvell as the prac-
tical eficiency and limitations of our method. In Section 5 we sumaeand
evaluate our results and mention some ideas for future nesea

2 Extended Virtual Substitution Framework

Our quantifier elimination procedure for univariately naehr formulas is going
to use distinct substitution procedures for test termsimmaitgng from superlinear
univariate atomic formulas on the one hand and from lineamat formulas on
the other hand.

This gives rise to two extensions of the existing framewdtkst, with each
test point there must be stored in addition the respectitastgution procedure.
Second, our new substitution for test terms from linear adormulas is going
to considerably extend the existing concept of virtual stigon. It is going to
be calledconstrained virtual substitution

2.1 Parametric Elimination Sets

Let ¢ be a weakly quantifier-free formula. We recall some defingi@and re-
sults from [LS06]. Originally, a parametric pre-elimiratiset fordxe had been
defined there as a finite set

E={(y.t.B) | 1<i<n}, where B; = ((ky;. ;) | 1<j<m). (3)

The guardsy; are strictly quantifier-free formulas, thest points; are pseudo-
terms possibly involving division, thk; are variables, and th#, arek;;-bounds.
Originally a parametric elimination séi for dx¢ is then a parametric pre-eli-
mination set such that for some virtual substitution praced the setE satisfies

dxp «— V |_| |_| (yiAv(qo,ti,x)). (4)

(vi.ti.Bi)EE ki1: fin Kim;: Bim;



With this definition, there is one single virtual substitutiprocedure used for
all pseudo-terms irE. For the present paper we generalize this as follows: A
parametric pre-elimination sdor dx¢ is a finite set

E={(7i,ti,0i,Bi)|1Si§n}’ (5)

where the definitions of;, t; and B; are as before. Eadh is either the regular
substitution {/-] of terms for variables or our new constrained virtual siibgon
[- /-], which we are going to explain in detail in the next subs®ttiA parametric
elimination setE for dx¢ is a parametric pre-elimination set such that

dxp «— V |_| |_| (y,-/\a,-((p,t,-,x)). (6)

(viti.oi Bi)EE ki1: Pin Kim;* Bim;

Assume thatp contains parameteus, ..., a,.. Let E be a parametric pre-
elimination set fordxg. Forzy, ..., z. € Z, subformulasy of ¢, and pseudo-
termst we use for a moment the notational convention

v' =vylz1/as, ..., z./a), t =tz/a, ..., z-/a]. (7)

Furthermore, for formulag’ in at most one variablgé we denote the solution set
wrt. k by Sg, ={z€Z]| p(z)}. TheprojectionIl(E, z4,..., z,) of E is then
defined as the finite set

{ (}/[yl/kl ----- ym/km]r z‘,[yl/kl rrrrr ym/km]: O-) | (}/r l,0, B) € Er
B=((kj’ﬁj)|1SJSm),)’1€S§/11,---,ymESk'" (8)

lvi/k1, . ym—1/km-1] S~

Lemma 1 Letg be a weakly quantifier-free formula with parameteys...,aq,.
Let E be a parametric pre-elimination set faxg with the following property:
For each interpretatiory,. .., z, € Z of the parameters,, ..., a,, we have

Elx(p’ «—> V (7’ A 6((,0’, TI, X)),
(y'.t',0)ell(E,z1,....2r)

whereg’' = @[z1/a1, ..., z-/a,]. ThenE is a parametric elimination set for the
formuladxe. 0O

2.2 Constrained Virtual Substitution

The essential idea of a virtual substitutioms that one is able to substitute for a
variablex a parametric test pointthat is formally not a term of the underlying
language. For instancemight be a fraction. The virtual substitution maps atomic
formulas to strictly quantifier-free formulas in such a wagttwhenever for some
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choice of valuegy, ...,z € Zforthe parameters,, ... ,a, the test point evaluates
to a number(zy, .. ., z-) € Z, then the following equivalence holds:

o[t(ze ..., z.)/x(ze, ..., z.) «— v(p, t,x)(z4, ..., Zr). (9)

Here, [/-] denotes regular substitution of terms for variables, wh&e allow
ourselves to identify integers with corresponding sums of +1 representing
them.

This notion of virtual substitution was fficiently general for weak quantifier
elimination from linear formulas as discussed in [LS06]r &r generalized setup
here, however, we have to extend the concept of virtual gubsh to constrained
virtual substitution Before giving a formal definition for this, let us return taro
example in (2) in order to get a first idea about how our weakltfier elimina-
tion would proceed for the elimination at:

Vydx(ax —y < OAXx*+ x+a > 0). (10)

From now on we allow ourselves to use absolute values withimdilas as an
abbreviated notation. The following suitable paramethimi@ation set for our
example contains one entry originating from the first atcimiowula and one entry
from the second one:

E={(a#0Ny+k=,0 25 [.//-1 ((k k] < lal))).
(true k. [-/]. (k. 1kl < lal+2)))}. (11)

The pseudo-ternéi:—" in the first entry describes a finite set of points around the
solution of the equationx — y = 0 corresponding to the first atomic formula. The
guarda # OA y + k =, 0 ensures that the pseudo-term evaluates to an integer.
The k-bound|k| < |a| describes the range of an (existential) bounded quantifier
to be introduced fok. The substitutiondx — y < O)[y:—"//x] Is defined as regular
substitution of terms for variables followed by multiplima with the square of
the denominator that comes into existence.

Assume for a moment that we define the substitutignH{(x +a > O)[y:j—k//x]
in the same fashion: This would yielg & k)?> + a(y + k) + a® > 0. This is
neither linear nor superlinear univariate wriandk. We thus make the following
alternative definition:

(x> +x+a> O)[y:—k//x] ‘= |ay + ak| > |a|® + 2a°. (12)

Notice that division of the right hand side ly yields |¥| > |a| + 2, where
la| + 2 is the Cauchy bound plus 1 f + x + a. So the right hand side of (12)
formulates thal“jT" satisfiesx® + x + a > 0 due to the fact that it lies outside the
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Cauchy bounds of this parabola, which extends46. For the possible case that
# lies in contrast within the Cauchy bounds but still satisfies x +a > 0 there
Is something left to do.

This turns us to the other entry in (11). Hekg < |a| + 2 is the bound of a
bounded quantifier that substitutikgvithin its scope exactly covers every single
point within the Cauchy bounds expanded by 1xéf+ x + a. Recall that the
substitution {/-] is the regular substitution of terms for variables.

The overall elimination result for our example is the follagyweakly quanti-
fier-free formula:

| | (a#0Ay+k=,0nk<OAlay+ak|>|a*+24°) v
K: [kI<lal

|_| (ak—y<0/\k2+k+a>0). (13)

k:|k|<|a|+2

For understanding why it is important to consider the Causbynds ex-
panded by 1 in contrast to simply the Cauchy bounds thensebansider the
exampledx(x2 = 1> 0A x = 1).

We now turn to formal definitions for the virtual substitutip //-]. Substitu-
tion into linear atomic formulas works exactly as usual [9Vdd, LS06]:

(ax = b) [Z—//x] = (abl = d'b),
(ax < b) [Z—//x] = (ad'b < a®b),
(ax =, b)|2//x] = (ab =, d'b). (14)

One easily verifies that these substitutions satisfy ountatgnce (9).

As already indicated by our example, we are going to use Gabolhnds
for substitution into superlinear univariate atomic fotass Consider an integer
polynomialp = ¢,x" + - - - + ¢ € Z[x]. We define thauniform Cauchy boundf
pas|c,_1| + -+ |col + 1.

Lemma 2 Forp=c,x"+ -+ co € Z[x] the following hold:

() For ¢, # 0the uniform Cauchy bound is always greater than or equal #o th
regular Cauchy bound:

|ca-al + - - +lcol )

|cn_1|+---+|co|+12ma><<1, o
Cn

(i) Letc; # Oforatleastone € {1,..., n}. If p(¢) = 0 for someé € R, then
&l < 1€l +1 < |ep-a| + -+ eol + 1.



Proof To start with, note thgt,| > 1. Ifin (i) the regular Cauchy bound equals 1,
then our claim is obvious. Else our claim follows from thedaling observation
by division by|c,|:

leal - (lea-al + -+ - +leol + 1) = ea-a] + -+ + ol + 1> |epa| + - - - + [col-

In (ii) we have, of coursg¢| less than or equal to the regular Cauchy bound.
If |eu| < len-1]+ - - -+ |col, then we obtainé| < [c,| - €] < |cu—1]+ - - - + |col, Which
implies|é|+1 < |c,_1| + - - -+ |co| + 1. If, in contrast,|c,| > |c,—1| + - - - + |co|, then
|€] < 1. Incasdc,_1|+---+]|co] > Owe obtainé|+1< 2 < |c,_q|+- - - +]|co| + 1.
In case|c,_1| + - - + |co] = O we havep = ¢,x" with ¢, # 0, thusé = 0, and it
follows that|é|+1=1=|c,_1|+---+|col +1. O

We adopt from [LSO06] the definition of an interval boundaryor & subset
S C Z anumber; € S is aninterval boundarnyif z—1¢ Sorz+1¢ S. Inthe
former casez is called dower interval boundary. In the latter caseis called an
upperinterval boundary. Let now be an atomic formula in at most one variable
x. The characteristic pointof a are the interval boundaries of the solution set
S¥={z€Z|a(z)} wrt. x of a.

Lemma 3 Forcy, ...,c, € Z consider an atomic formula,x” + --- 4+ co 0 0in
at most one variable, wherep € {=, #, <, <, >, >}.

(i) For all characteristic pointsk of ¢,x"” + - - - + ¢g 0 O we have

|k| < lep—1| + - -+ + |co| + 1.

(i) The atomic formula,x" +- - -+ ¢ ¢ 0 has a constant truth value for choices
[ of x with |c,_1| + - - - + |co| + 1 < I. The same holds for choicésf x with
I < —(lep-a] + -+ -+ |co| + 1).

Proof If we havein part (i) that, = --- = ¢, = 0, then there are no characteristic
points at all, and the statement is trivial. Elseldet Z be a characteristic point of
c,x"+- -+ cg ¢ 0. Using the definition above and the intermediate valuertémo
it is easy to see that there is a real zérof c,x" + - - - + ¢o within the interval
[k—1, k+1]. With Lemma 2(ii) it follows thatk| < |&]|+1 < |cp—1|+- - - +|co| + 1.

Part (ii) follows by induction from the observation that i atomic formula
has diferent truth values atand/ + 1, then either or / + 1 is a characteristic
point. O

Letnowp = ¢, x"+---+co € Z[ay, ..., a,][ x], and letp be any of the relations
in our language or equality. We define

(p0O)[£//x] = (@8 > a(lessl + -~ + leol + 1) A (p 0 O)[oo//x]) v
(a8 < ~a(lexal + -+ leol + 1) A (p 0 O)[=o0//x]). (15)
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For substituting the nonstandard numbgx® into atomic formulas we follow
ideas by Weispfenning [Wei97b]. Substitution into equati@nd into negated
equations is straightforward:

n n

(p=0)#o0//x]:= \ei=0 (p#0)xoo//x]:=\/c;£0.  (16)

For ordering inequalitie® the definition is recursive. Denote lgy= c,_1x""1 +
-+ + ¢g the formal reductum op, and letw® := (@ \ =) be the strict part ob.
We first give the substitution foroco:

(p w 0)[oo//x] = c, a)SOV(cn=O/\(qa)O)[oo//x]) for n >0,
(cow 0)[eo//x] = cowO. (17)

For the substitution of-c0 one has to consider in addition the parities of the
degrees during recursion:

(pw 0)[-c0//x] := (-1)'c, @’ OV (cn =0A(qw O)[—oo//x]) for n > 0O,
(cow 0)[—oo//x] = cowO. (18)

In contrast to our substitution (14) into linear atomic falas our substitu-
tion (15) into superlinear univariate atomic formulas dnesnecessarily satisfy
Equivalence (9). As a counterexample consider-{(1)?(x — 2)*> > 0)[0//x].

It satisfies, however, a weaker condition, which is madeipeein the follow-
ing lemma. It is one crucial technical observation of ourgrahat the weaker
condition can still be exploited to establish an eliminatibeorem.

Lemma 4 (Constrained Virtual Substitution) Consider a pseudo term=
b /a' and a superlinear univariate atomic formupee 0, wherep = ¢,x"+- - -+co
forn > 2. Set

A= 1d'b| > ad?(cpa| + - + |co| + 1).

Whenever for some choiee= (z1, ..., z,) € Z" of the parametersy, ...,a, the
test pointr evaluates to a numbe(z) € Z, then the following equivalence holds:

Az) — ((p 0 O)1(2)/x1(2) < (p 0 O)It//x](2)).

Proof To start with, it is noteworthy that the premigds equivalent to the dis-
junction of the two inequalities on the right hand side of tedinition in (15).
Furthermore, these inequalities exclude each other.zLet(z4,..., z.) € I
such thatt(z) € Z. Assume thati(z) holds. Then w.l.o.g. the first inequal-
ity (ab > a?(lcp—1| + -+ + |col + 1))(2) holds. This is equivalent to(z) >
(lcaea| + - - - +|col + 1)(2). By Lemma 3 we have

(p 0 0)1(2)/x](2) «— (p 0 O)[I/x](2)
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foralll > 1(z) > (|c,_1]+- - -+]co|+1)(2). The substitution ofo exactly simulates
such pointg:

(p 0 0)[1(2)/x])(2) <= (p 0 O)[o0//x](2).

Since we are already in a situation whet'(> a?(|c,—1| + - -+ + |co| + 1))(2)
holds, we finally obtain

(p 0 0)[oo//x](2) «— (b > a*(lc,al + -~ +col +1))(@) A (p 0 0)[o0//x](2)
— (poO)1//x](2). O

For clarity, we refer to virtual substitution proceduresttisatisfy only the
weaker condition described by the previous lemmaasstrained virtual substi-
tutionprocedures. The idea behind this notion is thaérves as a constraint under
which the virtual substitution behaves well. Note, howeteat for substitution
into linear formulas we still have Equivalence (9) withoayaonstraints.

3 Univariate Quantifier Elimination

In this section we present a quantifier elimination procedar the set of univari-
ately nonlinear formulas.

3.1 Elimination of One Quantifier

The following representation lemma implies that charastierpoints can gener-
ally be expressed by weakly quantifier-free formulas in teohthe coéicients
of the input formula.

Lemma 5 (Representation Lemma) Consider the superlinear univariate
atomic formulac,x" + - - - + ¢g 0 Owrt. x wherecy, ...,c, € Z[aq, . . ., a]. For a
new variablek, we define the following strictly quantifier-free formula:

p =kl <lep-af + -+ +]col + 1.

Thengislinear ink. Furthermoreg is ak-bound. Finally, for each interpretation
21, - .-, 2, € Z Of the parameters,, .. .,a, the solution ses;f(zl ..... z,) contains
all characteristic points ofc,x" + --- +¢co 0 0)(z1, . . ., Zr).

Proof The linearity of § and the finiteness of its solution set wkt.are obvi-
ous. Choose interpretations, ..., z. € Z of the parametergy, ..., a,. If
ci(ze ..., z,) =0foralli e {1,..., n}, then there are no characteristic points at
all. Otherwise let € {1,.. ., n} be the largest index such thafz,, .. ., z,) # 0,
and apply Lemma 3(i) toc{x’ + - -+ + ¢c0 0 0)(z1, . . ., z). O
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Lemma 6 Let o be one of our substitutions/-], [-//-]. Let ¢’ be a weakly
guantifier-free positive formula in one free variable Lets be a variable-free
pseudo-term that possibly contains division but descréresitegert* € Z. As-

sume that for all atomic subformulasof ¢’ and all interpretationgn, ...,y, € Z

of bound variable%, ..., k, occurring ina the following holds:

o, 0, x)(y1, -, ya) — alt/x](y1, -, yu).

Theno(¢', 1, x) — @'[t*/x].

Proof We proceed by induction on the word length of the formala If ¢’
is an atomic formula, then it follows from the requirementdte lemma that
oo, t,x)(y1, ..., ) — @[t /x](y1, ..., y,) for all possible interpretationg,,

.., Y. € Z of the bound variablek,, ... ,k, occurring ing’. Since boths(¢’, ¢, x)
andg'[t* /x] do not contain any other variables besidgs. . ., k,, it follows that
o(¢'.t',x) — ¢'[t*/x]. Consider now the case that not atomic. Sincey’ is
positive, it sifices to consider formulas of the forgh = ¢ V @), @' = @ A @5,
@' = |_|k:ﬁ @}, ande’ = |_|k:ﬁ @}

Consider the cas@’ = ¢’ V ¢,. Assume that(¢'.1', x) = o(@] V @5, 1, X)

holds. By our induction hypothesis we have both

o(pl.t.x) — @|[t"/x] and o(@). 1. x) — 5[t /x].

Since both our substitutions are defined in terms of sulbstitsifor atomic formu-
las it follows thato (@} V @5, 1, x) = o(¢7. 1. x) V(@) t', x). Thus at least one of
o(p). 1. x), o(@) t', x) holds and, accordingly, at least onegfr* /x], @5[t*/x]
holds. Hencep}[t*/x] vV @,[t* /x] holds. The case’ = ¢ A ¢, is similar.

Next, consider the casgl = | |,. , ¢3. Assume that the premise of our desired
implication holds:

o(¢,t,x) = 0<|_| @1, x) = |_| o(@). 1. x).
k: p k: p

Then there isy € S;f such thate(¢}. 7, x)[y/k] = o(@i[y/k].t.x). By the
induction hypothesis it follows that[y/k][t*/x] = ¢}[t*/x][y/k] holds. Hence
by our choice ofy we obtain that the conclusion of our implication holds:

| |artr /5D = (L] o2 )1 /1.
k:p k:p

The case of a bounded universal quantifier is similar. Ndte¢ then the induc-
tion hypothesis has to be applied several but finitely mamgsi. O
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It is not hard to see that the previous lemma does not holddon+positive formu-
las¢’.

In [LSO06] we have explicitly given a parametric eliminatiset for the subset
of linear formulas in the uniform Presburger arithmetic. &ve going to use that
very set as a subset of our elimination set for the more geoase discussed
here. Note that in the following lemma the elimination getloes not depend on
the logical structure of but only on the bounded quantifiers and on the set of
atomic formulas contained therein.

Lemma 7 (Elimination of One Quantifier, Linear Case) Consider a line-

ar formula 3x¢ with parametersy, ..., a,, whereg is weakly quantifier-free,
positive, and in prenex normal form:
p=01...0,y.
kl:ﬂl kn:ﬂn

Let the set of all atomic formulas ¢f that containx be
{mx o s;+r|ielUI).

Here, then; and r; are polynomials in the parameters, ..., a.. Thes; are
polynomials in both the parameteds, . . .,a, and the bound variables,, ..., k,.
Fori € I;, we havey; € {=, #,<,<,>,>}. Fori € I,, we have thap; is either

=,, Of #,,, wherem; is a polynomial inas, ...,a,. Letk, ki, ...,k denote new
variables. Define
pi = pulki/k. . ... ky/ko., ... By =Pulki/ks ..., ky/kn.

Definem = lcm{m®+1|ie I, }. Fori € I U I, define
s; = si[ki/ka, ..., ki/k,) and 6, =—|nlm <k —s; <|nm.
ThenE = {(y;,t;, B;)) | i€ I;U I, } U {(true O, @)}, where

i+ k
vi=(m#0Ar+k=,0), fi:r i

. Bi=((k1. ). ... (ky. B,). (k. 6)).

i
Is a parametric elimination set fatxg. O

Note that the definition of; is such that wheneves holds, then the corre-
sponding; is defined and evaluates to an integer.

Lemma 8 (Elimination of One Quantifier)  Consider a univariately nonlin-
ear formuladxe with parameters,, ..., a,, where

@=01...0,y.

kl:ﬂl kn:ﬂn
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is weakly gquantifier-free, positive, and in prenex normahfo Let Eq be the
(regular) parametric elimination set according to Lemmai7the subset of linear
atomic formulas iny and the bounded quantifiers occurring ¢n Let { p; o;
0| i € I} be the subset of superlinear univariate atomic formulag ofLet
{t; 0,0|j e J} bethe set of all congruences and incongruences occurrigg in
whereg; is either=,, or #Z,,,. Letm = lcm{ mJZ.+ 1|jeJ}. Foriel,denote by
u; the uniform Cauchy bound ¢f, and define for a new variable the following
strictly quantifier-free formula:

§:=\/lkl <u+m

iel

Then the following is a parametric elimination set fbxg:

E={(.v[-//] B)|(r.t. B) € Eo} U {(true k,[-/-]. ((k. 6))}.

Proof Fix an interpretatiorn;,..., z. of the parameters,,. .., a.. According to
Lemma 1 it is skficient to show that the projectidi(E, z1, .. ., z,) satisfies the
following equivalence for’ = ¢[z1/as, ..., z./a):

dx¢’ «— V (y' No(g',t, x))
(y'.t',0)ell(E,z1,....2r)

We first prove the implication from the right to the left. Inrntoast to the lin-
ear case and due to our constrained virtual substitutieigimot trivial. Suppose
that the right hand side holds. Then for at least gner’( o;) € II(E, z1, . . ., Zr)
the corresponding; A o;(¢', 7}, x) holds. Recall that; is a pseudo-term possibly
containing division. On the other hand, the validityyofguarantees that cor-
responds to an integer. Denote that integer;byWe are now going to prove the
following, which by Lemma 6 implies that ouf € Z is one possible choice faor,
such thaBlx¢’ holds: Leta be any atomic sub-formula ¢f with bound variables
ke, ..., k,. Letyq, ..., y, € Z be an interpretation df,, .. ., k,. Then

oj(a, 1, x) (Y1, - .. yu) — alf5/X] (1., yu)-

If ; is the regular substitutionf-], then the implication is trivial. Else; is our
constrained virtual substitution/f-]. If « is linear, then {//-] satisfies Equiva-
lence 9, and our implication is just the direction from thghtito the left of that
equivalence. If, in contrast; is a superlinear univariate atomic formylag; 0O,
wherei € I, then we make a case distinction g'ne Z. |f |zj.‘| > ui(z, ..., Zr),
I.e., it lies outside the uniform Cauchy boundagfthen our implication follows
from Lemma 4. Otherwise, one verifies by inspection of Dabnit(15) that
oi(a, 1), x)(k, ..., k,) «— false such that the implication holds trivially.
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Assume vice versa thatx¢’' holds. Consider first the degenerate case that
S, = Z. It I # @, then we have (tru®,[-/-]) € TI(E, z1, . . ., z,). Otherwise,
we have inherited from Lemma 7 (trv@[-//-]) € II(E, z4, ..., z.), and in the
absence of superlinear univariate formulag{Q = [0/x]. Letnowa ¢ S7, ¢ Z.

If S¥.NS; # @, say,z € S;NS;, thenthereis (true, [-/-]) € TI(E, z1.. .., Z)
originating from the test point (trué, [- /-], ((k, 8))).

Assume now that, in contrasg’, N Sy = @. Then we are in a situation,
where we can consider insteadhe formulag as follows: We replace ip each
superlinear univariate atomic formupa o; O by the following strictly quantifier-
free formula:

(X <—u; A (pi 0i 0)[—00//x]) v (x > u; A (p; o O)[OO//X])

Defining¢’ := ¢[z1/a1, . ... z-/a,] and on our assumption that, N S§ = @, we
havey’ <« ¢, from which it follows thatdx¢’ holds. Sincelxg obtained this
way is a linear formula we know by Lemma 7 a regular parametimnsination set
for this:

EoU { (true —u; + k. ((k. |k| < m))). (true u; + k. ((k. |k| <m))) | iel}.

We adapt this set to our constrained virtual substitutiamiwork by adding to
each test point the constrained virtual substitution:

E = {(n.t.[-//1 B)|(r.t. B) € Eg} U
{ (true tu; + k.[-//]. (k. [kl <m))) | ieT}.

Recall from the definition of our constrained virtual subgtion [- /-] that for
linear formulas it equals the virtual substitution usedi8(6]. It thus follows that
II(E, z4, ..., z,) is an elimination set foAx¢’. Consequently from the validity of
dx¢’ it follows that the following formula holds:

V (¥ Ao(@. 1. x)).

(.1 6)eN(E z1,....2+)

Let (/. 7, 6) e T(E, z1, . .., z,) suchthay’ Ao(¢’, ', x). We make a case distinc-
tion on the originof ¢/, ', o). If

(.1, 0) eD({ (r.t.[.//1. B) | (r.1. B) € Eo }, 21..... %),

then it follows from { (y,t,[-//-]. B) | (y.t.B) € Ey} C E that (/,7,0) €
I(E, z4, . .., z-). In the other case, where

14



recall from the formulation of the present lemma the debnitofm, and observe
that the following relation holds for all with |y| < m(za, ..., Zr):

| £ ui(ze, ..., z-) +y| < (2u; + m)(zq, . . ., 2r).

So there is a test point'(7,[-/-]) € II(E, z4, ..., z-), which differs from our
considered point only by the substitution procedure. Imloaises, we have found
atestpointy’,t,¢*) e II(E, z4, . . ., z-), which differs from our considered point
at most by the substitution procedure. We are now going twshat

Y Aot (@, 1, x).

Note that this is not trivial even in the first case where- ¢* = [-//], because

in ¢’ there possibly occur superlinear univariate formulas. aReleat we are in

a situation where in particulagr holds, which implies that € Z. This allows

to apply Equivalence (9), and it follows that| > u;(z1, ..., z,) foralli e I.
Hence, using Lemma 4 and Equivalence @)(¢’,t, x’) equivalently replaces
every single atomic formula igp’ such that we obtain our desired observation
Y Ao (¢, 1, x). Hence

V  (Fro@.r.),
(y'.1.0)€ll(E.z1.....2+)

which is what had to be shown.o

3.2 Elimination Theorem

In order to possibly iterate weak quantifier elimination vextrhave to make sure
that the output of our elimination procedure is again umataty nonlinear; in
other words, it satisfies the defining conditions J&{Us) in the introduction. In
contrast to the linear case, this observation is not trivial

Lemma 9 Letg be weakly quantifier-free, positive and prenex. Assumeithat
occurs within a univariately nonlinear formula. Then replacingdxg in ¢ with
the result of the application of the parametric eliminategt £ from Lemma 8 is
again univariately nonlinear.

Proof Letx,,...,x, be the quantified variables occurringgn We have to show,
that the formula

¢ = V |_| |_| (}’i/\O'i(CO,ti,x))~ (19)
(vi.ti,0i, Bi)€E ki1 fin Kim;: Bim;

satisfies our conditions (Y—(Us) wrt. x4, ..., x;. According to Lemma 5 the
bounds of our newly created bounded quantifiers do not aoatai of the variable
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X1, ..., xs. Since each nontrivial guard originates from a regular ielation set,
all guards also satisfy the conditions,)d(Us). It is hence sfficient to consider
formulas of the fornv;(«, ;, x) for each atomic formula occurring ing. If a is
a linear formula the statement is trivial. For the case univariately nonlinear
the statement is easily obtained by inspection of the definih (15). O

Theorem 10 (Elimination Theorem) The ordered ring of the integers with
congruences admits weak quantifier elimination for uniataly nonlinear for-
mulas.

Proof Let @ be a univariately nonlinear formula. We proceed by inducta the
numbem of regular quantifiers iw.”If n = 0, theng'is already weakly quantifier-
free. So there is nothing to do. Consider now the case 0. There is then a
subformula ofp"of one of the formslxg or Vx¢, whereg is weakly quantifier-
free. The latter case can be reduced to the former one by métresequivalence
Vx@p «— -dx-@. We may w.l.o.g. assume thatis in prenex normal form and
positive. By Lemma 8, there exists a parametric eliminasietE for dx¢. That
IS, Ixg IS equivalent to

@ = V Ll |_| (]/,-/\Gi(@fi,x)):

(vi.ti.oi.B;)EE ki1 fin Kim; Bim;

whereB; = ( (ki;, ;) | 1< j < m; ). We obtainy” from ¢ by equivalently replac-
ing dx¢ with ¢’. Lemma 9 states that iS again univariately nonlinear. Hence we
can eliminate the remaining quantifiers frgshby our induction hypothesis.O

4 Implementation and Computation Examples

The procedure described in this paper has been implemant=ebiLOG, which
stands foREDUCE logic systenfDS97, DS99b]. It provides an extension of the
computer algebra systeREDUCEt0 a computer logic system implementing sym-
bolic algorithms on first-order formulas with respect to pemarily fixed first-
order languages and theories. Such a choice of languagéhead/tis called a
domainor, alternatively, aontext

Before turning to the integer context relevant for our woekdy we briefly
summarize the other existing domains together with shartesaand alternative
names, which are supported for backward compatibility:

BOOLEAN, B, IBALP The class of Boolean algebras with two elements. These
algebras are uniquely determined up to isomorphigSoILEAN comprises
guantified propositional calculus [SS03].
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COMPLEX, C, ACFSF The class of algebraically closed fields such as the complex
numbers over the language of rings.

DIFFERENTIAL, DCFSF A domain for computing over tlierentially closed fields.
There is no natural example for such a field, but the methodsnedl be
used for obtaining relevant and interpretable resultsfalsceasonable dif-
ferential fields [DS04].

PADICS, DVFSF One prominent example for discretely valued fields gadic
numbers for some primewith abstract divisibility relations encoding order
between values. AbPADICsalgorithms are optionally uniform ip[Stu00].

QUEUES QQE A (two-sided) queue is a finite sequence of elements of sosie ba
type. There are two sorts of variables, one for the basic &mkone for
the queue type. Accordingly, there is first-order quantiftcapossible for
both sorts. So far, the implementation is restricted to dadsras basic type
[StrO6].

REALS, R, OFSF The class of real closed fields such as the real numbers with
ordering. This context was the original motivation REDLOG. It is still
the most important and most comprehensive one [DSW98].

TERMS, TALP Free Malcev-type term algebras. The available functiontzym
and their arity can be freely chosen. [SWO02].

The work discussed here has been integrated into anothedsncain:
INTEGERS Z, PASF The full linear theory of the integers.

This domain had been originally introduced for the methoeiscdbed in [LS06].
It now naturally extends to univariately nonlinear formaNaithout loosing any of
its previous features.

The idea ofREDLOG is to combine methods from computer algebra with first-
order logic thus extending the computer algebra systemucCEto a computer
logic system. In this extended system both the algebrai &ndl the logic side
greatly benefit from each other in numerous ways. The cumelrBseRED-
LoG 3.0 is an integral part of the computer algebra syse#DUCE 3.8. The
implementation of our methods described here is part of tdneent development
version of REDLOG. It is going to be distributed witREDUCE 3.9. Until then it
is freely available on theEDLOG homepagé.

We are now going to discuss various computations with outempntation.
The idea is to illustrate the possible application rangeatgm the limits of our

lwww.redlog.eu
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method and of the current implementation. All our compotadihave been per-
formed on a 1.66 GHz Intel Core 2 Duo processor T5500 usingam core and
128 MB RAM.

4.1 Optimization

We define gparametric linear optimization problem with univariatatpnlinear
constraintsas follows: Minimize a cost functiomx; + - - - + y,x, subject to

AX>b, pr010, ..., p o0

As usual,A = (a;;) is anm x n-matrix, andb = (1, ..., pn) 1S anm-vector.
Fori e {1,..., m} andj € {1,..., n} we havea;;, f;, v; € Z[as, ..., ayl, 1.e.,
all these cofficients are possibly parametric. For eack {1,..., r} we have
ps € Zlay, .. ., ai][x;] forsomej € {1,..., n}, 1.e., thepy, ..., p, are parametric
univariate polynomials. Each correspondmgs one of=, #, <, >, >, <.

Using a new variable for the minimum such a problem can be straightfor-
wardly translated to our framework as follows:

Elxl...EIx,,<Zijj < Z/\/\ Zaijxj > fi A /\ps Os O)
=1

i=1j=1 s=1
Example 11 Minimize x + y subject to the following constraints:
x>0 y>0 x+y>0 and x’+a<0.
The formulation as a quantifier elimination problem readolsws:
EIxEIy(x+y§z/\x20/\y20/\x+y20/\x2+a<0).

For thisREDLOG computes within 20 ms a weakly quantifier-free equivalemtco
taining 103 atomic formulas. Setting then= 10 and automatically simplifying
yields within 2190 ms the resuit> 3, i.e., the minimum fox + y is 4. This final
simplification step includes in particular expansion ofpa#tsent bounded quanti-
fiers. If we plug ina = 10 before the elimination, then we directly obtain- 3

in only 330 ms. This amazingfiierence in time, we had already observed for the
full linear theory [LS06]. It can be explained as follows: both Lemma 7 and
Lemma 8, we compute the least common multiple of the squdra moduli.

For non-parametric moduli we optimize this by using instéraabsolute values
of the moduli.

Generalizing our method discussed in the present papxtémded quantifier
elimination[Wei97c, Wei97b, DS99a, SS03] would admit to obtain in addia
sample point for the computed optimum. The optimizationragsied above with
the absolute value instead of squares could be applied ipat@metric case as
well when adding to the language a symbol for the absolutgeval

18



4.2 Software Security

Information flow controlis one important issue in the research area of software
security [Sne05, SRKO06]. The question is whether it is gaesio manipulate
parameters in such a way that sensitive information canrbe@xcessible outside

of special code segments. We are going to discuss a modificatian example
from [LS06].

Example 12 For the following piece of code there is a security risk ifrhare
choices fora andb such thaty is assigned the value of sormAgn"2]
if (@ < b) then
if (a+tb mod 2 = 0) then
n = (a+b)/2
else
n := (at+b+1)/2
fi
A[n"2] := get_sensitive_data(x)
send_sensitive_data(trusted_receiver,A[n"2])
fi
y = Alabs(b-a)].
An attacker would be interested in a description of all valata andb such that
this happens. This can be formulated as follows:

In((a<bha+b=0A2n=a+bA
((a<bAb—a=n*)V(@a>bNa—b=n?))V
(a<bha+b#,0N2n=a+b+1A
((a<b/\b—a=n2)v(a2b/\a—b=n2)))).

Our implementation computes in less than 10 ms the followiegkly quantifier-
free description:

|| (a-b<O0na-b+k*=0na+b#0na+b-2k+1=0)V
k: |k|<(a—b)2+2

|| (@-b<O0na—b+k*=0na+b=,0na+b-2k=0)

k: |k|<(a—b)2+2

4.3 Integer Roots

Example 13 Consider the generic polynomial= ax? + bx + c. The question
whetherp has an integer root can be expressed by a univariately r@nlformula
as follows:

Ax(ax? + bx + ¢ = 0).
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Our elimination procedure yields after less than 10 ms thHeviing weakly
guantifier-free equivalent:

|_| ak?+ bk + ¢ = 0.

k:|k|<|b|+]|c|+2

This result exactly substitutes all integers inside théarm Cauchy bounds qf
expanded by 1. This expansion is the least common multipleeofnon-existing)
moduli in the input.

This result obviously does not provide much mathematicaigimt. A help-
ful though imprecise intuition about our method is the faliiog: Its intelligence
works mostly outside of the relevant Cauchy bourds/way, a slight modifica-
tion of our previous example yields useful information:

Example 14 Given suitable:,, n, € Z andd,, d, € N\ {0} we look for integers
zeros ofp(x) = ax? + px + y within the interval f1/dy, no/d-]. This can be
formulated as follows:

Elx(p= ONdix >ni Ndox < I’lz).

Let us consider the polynomial= x° — 3x? + 1. We want to know whether there
is a zero ofp in [1/3, 3]. This yields the following input:

Ix(x°-3x*+1=0A3x>1Ax<3).

For this, our implementation computes “false” in less th@nnis. In fact, our
choserp has no integer zeros at all.

This last example illustrates the fact that our method coexdbiwith automatic
simplification yields adecision procedurdor univariately nonlinear sentences.
So for sentences, we are able to obtain as a result eithe” ‘trnu‘false,” which
both do not contain any bounded quantifiers. Hence, conugithe decision of
sentences, we provide a considerable extension of thenaliBresburger frame-
work, where the user need not accept any additional synteafistructs.

5 Conclusions

We have considered the integers using the language of ardegs extended by
ternary symbols for congruence and incongruence. On tlsis bage have given a
weak quantifier elimination procedure for the set of unataly nonlinear formu-
las. The notion of weak quantifier elimination refers to thet that the result pos-
sibly contains bounded quantifiers. For fixed choices ofipatars these bounded
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guantifiers can be expanded into disjunctions or conjunstié-or decision prob-
lems they can be completely avoided. Our methods #r@ently implemented
and publicly available within the computer logic systembLOG, which is part
of REDUCE The applicability of our new method and its implementatitas
been demonstrated by means of various application examplasthe future it
is planned to provide also an extended quantifier eliminagmcedure within
the framework considered here. Furthermore, it appearg @ fromising idea
to extend the language by a symbol for the absolute values Wauld allow to
considerably reduce the ranges of the bounded quantifiengiganto existence.
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