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Abstract

We consider the integers using the language of ordered ringsextended by
ternary symbols for congruence and incongruence. On the logical side we
extend first-order logic by bounded quantifiers. Within thisframework we
describe a weak quantifier elimination procedure for univariately nonlinear
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tain bounded quantifiers. For fixed choices of parameters these bounded
quantifiers can be expanded into finite disjunctions or conjunctions. In uni-
variately nonlinear formulas all congruences and incongruences are linear
and their modulus must not contain any quantified variable. All other atomic
formulas are linear or contain only one quantified variable,which then may
occur with arbitrary degrees. Our methods are efficiently implemented and
publicly available within the computer logic systemREDLOG, which is part
of REDUCE. Various application examples demonstrate the applicability of
our new method and its implementation.
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1 Introduction

After the fundamental work of Presburger [Pre29] there has been considerable re-
search on Presburger arithmetic, which is the additive theory of the integers with
ordering and congruences. The largest part of this researchwas concerned with
complexity issues and with decidability [Coo72, FR74, FR75, FR79, vzGS78,
Ber77, Ber80]. Weispfenning [Wei90, Wei97a] was the first one who was explic-
itly interested in quantifier elimination as such in contrast to using it as a technique
for decision. His quantifier elimination procedures are triply exponential, which
is known to be optimal [FR74]. He managed, however, to optionally decrease that
complexity by one exponential step to doubly exponential using the following
technical trick: certain systematic disjunctions occurring during the elimination
process are not written down explicitly. Instead one uses big

∨

(disjunction) and
∧

(conjunction) operators with an index variable running over a finite range of
integers. It is important to understand that at any time these big operators could
be expanded such that one obtains a regular first-order formula at the price of
considerably increasing the size. Independently, Weispfenning and others have
developed virtual substitution techniques for quantifier elimination in various the-
ories starting with the reals and including also valued fields and Boolean algebras
[Wei88, LW93, Wei97b, Stu00, SS03].

In a recent publication [LS06] the authors of the present paper combined the
two research areas by presenting integer quantifier elimination within the frame-
work of virtual substitution. Furthermore, they extended that framework in order
to cover a considerable generalization of Presburger arithmetic admitting as co-
efficients arbitrary polynomials in the parameters, i.e., the unquantified variables.
This extension is called thefull linear theory of the integers. It perfectly corre-
sponds to what is referred to as linear quantifier elimination for the reals or for
valued fields [LW93, Stu00]. Recall that in regular Presburger arithmetic, in con-
trast, all coefficients must be numbers. The difference vanishes when considering
decision problems. It is quite clear that the full linear theory of the integers does
not admit quantifier elimination in the traditional sense. Instead one usesweak
quantifier elimination. This does not necessarily deliver quantifier-free equiva-
lents but formulas that possibly contain somebounded quantifiers. For this, one
extends the language of logic by two additional quantifiers

⊔

k: β and
d
k: β. Here

k is a variable, andβ is a formula not containing any quantifier. The semantics of
the new quantifiers is defined as follows:

⊔

k: β

ϕ iff ∃k(β ∧ ϕ),
ll

k: β

ϕ iff ∀k(β −→ ϕ). (1)

The quantifier
⊔

k: β is called anexistential bounded quantifierif the solution set of
β wrt. k is finite for all interpretations of all other variables. Under the same con-
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dition
d
k: β is called auniversal bounded quantifier. Such formulasβ are calledk-

bounds. Formulas containing no quantifiers at all are calledstrictly quantifier-free.
Formulas containing exclusively bounded quantifiers are called weakly quantifier-
free. The choice of notation obviously resembles Weispfenning’s big disjunction
and conjunction operators. In general, however, bounded quantifiers can be ex-
plicitly expanded only for fixed choices of all parameters occurring therein.

In this paper, we introduce weak quantifier elimination for asubset of first-
order formulas, which considerably extends the full lineartheory of the integers
discussed in [LS06]: Consider a formulaϕ with parametersa1, . . . , ar. Let ϕ
contain quantifiersQ1, . . . ,Qs with quantified variablesx1, . . . , xs, where each
occurrence of any of our new quantifiers is in fact a bounded quantifier. Assume
furthermore that all right hand sides of equations, inequalities, congruences, and
incongruences inϕ are 0, which can always be achieved by obvious equivalence
transformations. Then we are able to eliminate fromϕ all the regular quantifiers
provided thatϕ satisfies the following requirements:

(U1) None of the quantified variablesx1, . . . ,xs occurs within moduli of congru-
ences or incongruences. Note, however, that the moduli may be arbitrary
polynomials ina1, . . . ,ar.

(U2) Considering the left hand side terms of congruences and incongruences as
polynomials inx1, . . . ,xs, over the coefficient ringZ[a1, . . . , ar] each such
term has a total degree less than or equal to 1.

(U3) Considering the left hand side terms of equations and inequalities as poly-
nomials inx1, . . . ,xs, over the coefficient ringZ[a1, . . . , ar] each such term
is either a nonlinear univariate polynomial or has a total degree less than or
equal to 1.

We call formulasϕ satisfying these three conditionsunivariately nonlinear. If
especially in (U3) every single left-hand side term matches the second case, then
ϕ is a linear formula, and we are in the situation discussed in [LS06]. Thus note
that according to our definition, every linear formula is also univariately nonlinear.

Accordingly, we refer to atomic subformulas ofϕ the left hand sides of which
match (U2) or the second case in (U3) aslinear atomic formulas(wrt. x1, . . . ,xs).
Those matching the first case in (U3) are calledsuperlinear univariate atomic
formulas(wrt. x1, . . . ,xs).

As an example, consider the following formula, which is univariately nonlin-
ear:

∀y∃x(ax − y < 0∧ x2
+ x + a > 0). (2)

The atomic formulaax − y < 0 is linear, and the atomic formulax2
+ x + a > 0

is superlinear univariate.
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As within the framework of [LS06], the elimination of regular quantifiers pos-
sibly introduces several new bounded quantifiers. It is noteworthy that in contrast
to similar elimination procedures for higher degrees over the reals [Wei97b], we
can positively decide by inspection of the original input that we are able to elimi-
nateall present regular quantifiers.

The plan of the paper is as follows: Section 2 recalls some basic definitions
and results from [LS06] and generalizes these to our extended framework here.
In Section 3 we formulate and prove our elimination theorem.Section 4 gives an
overview of our implementation inREDLOG and discusses various computation
examples in order to give an idea about possible applications as well as the prac-
tical efficiency and limitations of our method. In Section 5 we summarize and
evaluate our results and mention some ideas for future research.

2 Extended Virtual Substitution Framework

Our quantifier elimination procedure for univariately nonlinear formulas is going
to use distinct substitution procedures for test terms originating from superlinear
univariate atomic formulas on the one hand and from linear atomic formulas on
the other hand.

This gives rise to two extensions of the existing framework:First, with each
test point there must be stored in addition the respective substitution procedure.
Second, our new substitution for test terms from linear atomic formulas is going
to considerably extend the existing concept of virtual substitution. It is going to
be calledconstrained virtual substitution.

2.1 Parametric Elimination Sets

Let ϕ be a weakly quantifier-free formula. We recall some definitions and re-
sults from [LS06]. Originally, a parametric pre-elimination set for∃xϕ had been
defined there as a finite set

E =
{

(γi, ti, Bi)
∣

∣ 1 ≤ i ≤ n
}

, whereBi =
(

(kij, βij)
∣

∣ 1 ≤ j ≤ mi
)

. (3)

The guardsγi are strictly quantifier-free formulas, thetest pointsti are pseudo-
terms possibly involving division, thekij are variables, and theβij arekij-bounds.
Originally a parametric elimination setE for ∃xϕ is then a parametric pre-eli-
mination set such that for some virtual substitution procedureν the setE satisfies

∃xϕ ←→
∨

(γi,ti,Bi)∈E

⊔

ki1: βi1

. . .
⊔

kimi : βimi

(

γi ∧ ν(ϕ, ti, x)
)

. (4)
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With this definition, there is one single virtual substitution procedure used for
all pseudo-terms inE. For the present paper we generalize this as follows: A
parametric pre-elimination setfor ∃xϕ is a finite set

E =
{

(γi, ti, σi, Bi)
∣

∣ 1 ≤ i ≤ n
}

, (5)

where the definitions ofγi, ti andBi are as before. Eachσi is either the regular
substitution [·/·] of terms for variables or our new constrained virtual substitution
[·//·], which we are going to explain in detail in the next subsection. Aparametric
elimination setE for ∃xϕ is a parametric pre-elimination set such that

∃xϕ ←→
∨

(γi,ti,σi,Bi)∈E

⊔

ki1: βi1

. . .
⊔

kimi : βimi

(

γi ∧ σi(ϕ, ti, x)
)

. (6)

Assume thatϕ contains parametersa1, . . . , ar. Let E be a parametric pre-
elimination set for∃xϕ. For z1, . . . , zr ∈ Z, subformulasψ of ϕ, and pseudo-
termst we use for a moment the notational convention

ψ ′ = ψ [z1/a1, . . . , zr/ar], t′ = t[z1/a1, . . . , zr/ar]. (7)

Furthermore, for formulasβ ′ in at most one variablek we denote the solution set
wrt. k by Skβ′ = { z ∈ Z | β ′(z) }. TheprojectionΠ(E, z1, . . . , zr) of E is then
defined as the finite set
{ (

γ ′[y1/k1, . . . , ym/km], t′[y1/k1, . . . , ym/km], σ
)
∣

∣ (γ, t, σ, B) ∈ E,

B = ((kj, βj) | 1 ≤ j ≤ m), y1 ∈ S
k1

β′1
, . . . , ym ∈ S

km

β′m[y1/k1,...,ym−1/km−1]

}

. (8)

Lemma 1 Letϕ be a weakly quantifier-free formula with parametersa1, . . . ,ar.
LetE be a parametric pre-elimination set for∃xϕ with the following property:
For each interpretationz1,. . . ,zr ∈ Z of the parametersa1, . . . ,ar, we have

∃xϕ′ ←→
∨

(γ ′,t′,σ)∈Π(E,z1,...,zr )

(

γ ′ ∧ σ(ϕ′, t′, x)
)

,

whereϕ′ = ϕ[z1/a1, . . . , zr/ar]. ThenE is a parametric elimination set for the
formula∃xϕ. ⊓⊔

2.2 Constrained Virtual Substitution

The essential idea of a virtual substitutionν is that one is able to substitute for a
variablex a parametric test pointt that is formally not a term of the underlying
language. For instance,tmight be a fraction. The virtual substitution maps atomic
formulas to strictly quantifier-free formulas in such a way that whenever for some
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choice of valuesz1, . . . ,zr ∈ Z for the parametersa1, . . . ,ar the test point evaluates
to a numbert(z1, . . . , zr) ∈ Z, then the following equivalence holds:

ϕ[t(z1, . . . , zr)/x](z1, . . . , zr) ←→ ν(ϕ, t, x)(z1, . . . , zr). (9)

Here, [·/·] denotes regular substitution of terms for variables, where we allow
ourselves to identify integers with corresponding sums of 1or −1 representing
them.

This notion of virtual substitution was sufficiently general for weak quantifier
elimination from linear formulas as discussed in [LS06]. For our generalized setup
here, however, we have to extend the concept of virtual substitution toconstrained
virtual substitution. Before giving a formal definition for this, let us return to our
example in (2) in order to get a first idea about how our weak quantifier elimina-
tion would proceed for the elimination of∃x:

∀y∃x(ax − y < 0∧ x2
+ x + a > 0). (10)

From now on we allow ourselves to use absolute values within formulas as an
abbreviated notation. The following suitable parametric elimination set for our
example contains one entry originating from the first atomicformula and one entry
from the second one:

E =
{(

a 6= 0∧ y + k ≡a 0, y+k
a
, [·//·], ((k, |k| ≤ |a|))

)

,
(

true, k, [·/·], ((k, |k| ≤ |a| + 2))
)}

. (11)

The pseudo-termy+k
a

in the first entry describes a finite set of points around the
solution of the equationax−y = 0 corresponding to the first atomic formula. The
guarda 6= 0 ∧ y + k ≡a 0 ensures that the pseudo-term evaluates to an integer.
Thek-bound|k| ≤ |a| describes the range of an (existential) bounded quantifier
to be introduced fork. The substitution (ax−y < 0)[ y+k

a
//x] is defined as regular

substitution of terms for variables followed by multiplication with the square of
the denominator that comes into existence.

Assume for a moment that we define the substitution (x2
+x+ a > 0)[ y+k

a
//x]

in the same fashion: This would yield (y + k)2 + a(y + k) + a3 > 0. This is
neither linear nor superlinear univariate wrt.y andk. We thus make the following
alternative definition:

(x2 + x + a > 0)[ y+k
a
//x] := |ay + ak| > |a|3 + 2a2. (12)

Notice that division of the right hand side bya2 yields | y+k
a
| > |a| + 2, where

|a| + 2 is the Cauchy bound plus 1 ofx2
+ x + a. So the right hand side of (12)

formulates thaty+k
a

satisfiesx2 + x + a > 0 due to the fact that it lies outside the
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Cauchy bounds of this parabola, which extends to+∞. For the possible case that
y+k

a
lies in contrast within the Cauchy bounds but still satisfiesx2+x+a > 0 there

is something left to do.
This turns us to the other entry in (11). Here|k| ≤ |a| + 2 is the bound of a

bounded quantifier that substitutingk within its scope exactly covers every single
point within the Cauchy bounds expanded by 1 ofx2 + x + a. Recall that the
substitution [·/·] is the regular substitution of terms for variables.

The overall elimination result for our example is the following weakly quanti-
fier-free formula:

⊔

k: |k|≤|a|

(

a 6= 0∧ y + k ≡a 0∧ k < 0∧ |ay + ak| > |a|3 + 2a2
)

∨

⊔

k: |k|≤|a|+2

(

ak − y < 0∧ k2
+ k + a > 0

)

. (13)

For understanding why it is important to consider the Cauchybounds ex-
panded by 1 in contrast to simply the Cauchy bounds themselves, consider the
example∃x(x2 − 1 > 0∧ x = 1).

We now turn to formal definitions for the virtual substitution [·//·]. Substitu-
tion into linear atomic formulas works exactly as usual [Wei97b, LS06]:

(ax = b)
[

b′

a′
//x

]

:= (ab′ = a′b),

(ax ≤ b)
[

b′

a′
//x

]

:= (aa′b′ ≤ a′2b),

(ax ≡m b)
[

b′

a′
//x

]

:= (ab′ ≡ma′ a
′b). (14)

One easily verifies that these substitutions satisfy our Equivalence (9).
As already indicated by our example, we are going to use Cauchy bounds

for substitution into superlinear univariate atomic formulas. Consider an integer
polynomialp = cnx

n + · · · + c0 ∈ Z[x]. We define theuniform Cauchy boundof
p as|cn−1| + · · · + |c0| + 1.

Lemma 2 For p = cnx
n + · · · + c0 ∈ Z[x] the following hold:

(i) For cn 6= 0 the uniform Cauchy bound is always greater than or equal to the
regular Cauchy bound:

|cn−1| + · · · + |c0| + 1 ≥ max
(

1,
|cn−1| + · · · + |c0|

|cn|

)

.

(ii) Let ci 6= 0 for at least onei ∈ {1, . . . , n}. If p(ξ) = 0 for someξ ∈ R, then
|ξ| < |ξ| + 1 ≤ |cn−1| + · · · + |c0| + 1.
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Proof To start with, note that|cn| ≥ 1. If in (i) the regular Cauchy bound equals 1,
then our claim is obvious. Else our claim follows from the following observation
by division by|cn|:

|cn| · (|cn−1| + · · · + |c0| + 1) ≥ |cn−1| + · · · + |c0| + 1 > |cn−1| + · · · + |c0|.

In (ii) we have, of course,|ξ| less than or equal to the regular Cauchy bound.
If |cn| ≤ |cn−1|+ · · ·+ |c0|, then we obtain|ξ| ≤ |cn| · |ξ| ≤ |cn−1|+ · · ·+ |c0|, which
implies|ξ|+1≤ |cn−1|+ · · ·+ |c0|+1. If, in contrast,|cn| > |cn−1|+ · · ·+ |c0|, then
|ξ| ≤ 1. In case|cn−1|+ · · ·+ |c0| > 0 we obtain|ξ|+1 ≤ 2 ≤ |cn−1|+ · · ·+ |c0|+1.
In case|cn−1| + · · · + |c0| = 0 we havep = cnx

n with cn 6= 0, thusξ = 0, and it
follows that|ξ| + 1 = 1 = |cn−1| + · · · + |c0| + 1. ⊓⊔

We adopt from [LS06] the definition of an interval boundary. For a subset
S ⊆ Z a numberz ∈ S is aninterval boundaryif z − 1 6∈ S or z + 1 6∈ S. In the
former case,z is called alower interval boundary. In the latter case,z is called an
upperinterval boundary. Let nowα be an atomic formula in at most one variable
x. Thecharacteristic pointsof α are the interval boundaries of the solution set
Sxα = { z ∈ Z | α(z) } wrt. x of α.

Lemma 3 For c0, . . . , cn ∈ Z consider an atomic formulacnxn + · · · + c0 ̺ 0 in
at most one variablex, where̺ ∈ {=, 6=,≤, <, >,≥}.

(i) For all characteristic pointsk of cnxn + · · · + c0 ̺ 0 we have

|k| ≤ |cn−1| + · · · + |c0| + 1.

(ii) The atomic formulacnxn+ · · ·+ c0 ̺ 0 has a constant truth value for choices
l of x with |cn−1| + · · · + |c0| + 1 < l. The same holds for choicesl of x with
l < −(|cn−1| + · · · + |c0| + 1).

Proof If we have in part (i) thatc1 = · · · = cn = 0, then there are no characteristic
points at all, and the statement is trivial. Else letk ∈ Z be a characteristic point of
cnx

n+ · · ·+ c0 ̺ 0. Using the definition above and the intermediate value theorem
it is easy to see that there is a real zeroξ of cnxn + · · · + c0 within the interval
[k−1, k+1]. With Lemma 2(ii) it follows that|k| ≤ |ξ|+1 ≤ |cn−1|+· · ·+ |c0|+1.

Part (ii) follows by induction from the observation that if an atomic formula
has different truth values atl andl + 1, then eitherl or l + 1 is a characteristic
point. ⊓⊔

Let nowp = cnx
n
+ · · ·+c0 ∈ Z[a1, . . . , ar][x], and let̺ be any of the relations

in our language or equality. We define
(

p ̺ 0
)[

b′

a′
//x

]

:=
(

a′b′ > a′2(|cn−1| + · · · + |c0| + 1) ∧ (p ̺ 0)[∞//x]
)

∨
(

a′b′ < −a′2(|cn−1| + · · · + |c0| + 1) ∧ (p ̺ 0)[−∞//x]
)

. (15)
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For substituting the nonstandard numbers±∞ into atomic formulas we follow
ideas by Weispfenning [Wei97b]. Substitution into equations and into negated
equations is straightforward:

(p = 0)[±∞//x] :=
n
∧

i=0

ci = 0, (p 6= 0)[±∞//x] :=
n
∨

i=0

ci 6= 0. (16)

For ordering inequalitiesω the definition is recursive. Denote byq = cn−1x
n−1 +

· · · + c0 the formal reductum ofp, and letωs := (ω r =) be the strict part ofω.
We first give the substitution for+∞:

(p ω 0)[∞//x] := cn ω
s 0∨

(

cn = 0∧ (q ω 0)[∞//x]
)

for n > 0,

(c0 ω 0)[∞//x] := c0 ω 0. (17)

For the substitution of−∞ one has to consider in addition the parities of the
degrees during recursion:

(p ω 0)[−∞//x] := (−1)ncn ω
s 0∨

(

cn = 0∧ (q ω 0)[−∞//x]
)

for n > 0,

(c0 ω 0)[−∞//x] := c0 ω 0. (18)

In contrast to our substitution (14) into linear atomic formulas our substitu-
tion (15) into superlinear univariate atomic formulas doesnot necessarily satisfy
Equivalence (9). As a counterexample consider ((x − 1)2(x − 2)2 > 0)[0//x].
It satisfies, however, a weaker condition, which is made precise in the follow-
ing lemma. It is one crucial technical observation of our paper that the weaker
condition can still be exploited to establish an elimination theorem.

Lemma 4 (Constrained Virtual Substitution) Consider a pseudo termt =
b′/a′ and a superlinear univariate atomic formulap ̺ 0, wherep = cnx

n+ · · ·+c0

for n ≥ 2. Set
λ := |a′b′| > a′2(|cn−1| + · · · + |c0| + 1).

Whenever for some choicez = (z1, . . . ,zr) ∈ Zr of the parametersa1, . . . ,ar the
test pointt evaluates to a numbert(z) ∈ Z, then the following equivalence holds:

λ(z) −→
(

(p ̺ 0)[t(z)/x](z)←→ (p ̺ 0)[t//x](z)
)

.

Proof To start with, it is noteworthy that the premiseλ is equivalent to the dis-
junction of the two inequalities on the right hand side of thedefinition in (15).
Furthermore, these inequalities exclude each other. Letz = (z1, . . . , zr) ∈ Zr

such thatt(z) ∈ Z. Assume thatλ(z) holds. Then w.l.o.g. the first inequal-
ity (a′b′ > a′2(|cn−1| + · · · + |c0| + 1))(z) holds. This is equivalent tot(z) >
(|cn−1| + · · · + |c0| + 1)(z). By Lemma 3 we have

(p ̺ 0)[t(z)/x](z)←→ (p ̺ 0)[l/x](z)
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for all l ≥ t(z) > (|cn−1|+· · ·+|c0|+1)(z). The substitution of∞ exactly simulates
such pointsl:

(p ̺ 0)[t(z)/x](z)←→ (p ̺ 0)[∞//x](z).

Since we are already in a situation where (a′b′ > a′2(|cn−1| + · · · + |c0| + 1))(z)
holds, we finally obtain

(p ̺ 0)[∞//x](z) ←→ (a′b′ > a′2(|cn−1| + · · · + |c0| + 1))(z) ∧ (p ̺ 0)[∞//x](z)

←→ (p ̺ 0)[t//x](z). ⊓⊔

For clarity, we refer to virtual substitution procedures that satisfy only the
weaker condition described by the previous lemma asconstrained virtual substi-
tutionprocedures. The idea behind this notion is thatλ serves as a constraint under
which the virtual substitution behaves well. Note, however, that for substitution
into linear formulas we still have Equivalence (9) without any constraints.

3 Univariate Quantifier Elimination

In this section we present a quantifier elimination procedure for the set of univari-
ately nonlinear formulas.

3.1 Elimination of One Quantifier

The following representation lemma implies that characteristic points can gener-
ally be expressed by weakly quantifier-free formulas in terms of the coefficients
of the input formula.

Lemma 5 (Representation Lemma) Consider the superlinear univariate
atomic formulacnxn + · · · + c0 ̺ 0 wrt. x wherec0, . . . ,cn ∈ Z[a1, . . . , ar]. For a
new variablek, we define the following strictly quantifier-free formula:

β := |k| ≤ |cn−1| + · · · + |c0| + 1.

Thenβ is linear ink. Furthermoreβ is ak-bound. Finally, for each interpretation
z1, . . . ,zr ∈ Z of the parametersa1, . . . ,ar the solution setSkβ (z1, . . . , zr) contains
all characteristic points of(cnxn + · · · + c0 ̺ 0)(z1, . . . , zr).

Proof The linearity ofβ and the finiteness of its solution set wrt.k are obvi-
ous. Choose interpretationsz1, . . . , zr ∈ Z of the parametersa1, . . . , ar. If
ci(z1, . . . , zr) = 0 for all i ∈ {1, . . . , n}, then there are no characteristic points at
all. Otherwise leti ∈ {1, . . . , n} be the largest index such thatci(z1, . . . , zr) 6= 0,
and apply Lemma 3(i) to (cixi + · · · + c0 ̺ 0)(z1, . . . , zr). ⊓⊔
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Lemma 6 Let σ be one of our substitutions[·/·], [·//·]. Let ϕ′ be a weakly
quantifier-free positive formula in one free variablex. Let t′ be a variable-free
pseudo-term that possibly contains division but describesan integert∗ ∈ Z. As-
sume that for all atomic subformulasα ofϕ′ and all interpretationsy1, . . . ,yn ∈ Z

of bound variablesk1, . . . ,kn occurring inα the following holds:

σ(α, t′, x)(y1, . . . , yn) −→ α[t∗/x](y1, . . . , yn).

Thenσ(ϕ′, t′, x) −→ ϕ′[t∗/x].

Proof We proceed by induction on the word length of the formulaϕ′. If ϕ′

is an atomic formula, then it follows from the requirements of the lemma that
σ(ϕ′, t′, x)(y1, . . . , yn) −→ ϕ′[t∗/x](y1, . . . , yn) for all possible interpretationsy1,
. . . ,yn ∈ Z of the bound variablesk1, . . . ,kn occurring inϕ′. Since bothσ(ϕ′, t′, x)
andϕ′[t∗/x] do not contain any other variables besidesk1, . . . ,kn, it follows that
σ(ϕ′, t′, x) −→ ϕ′[t∗/x]. Consider now the case thatϕ′ not atomic. Sinceϕ′ is
positive, it suffices to consider formulas of the formϕ′ = ϕ′1 ∨ ϕ

′
2, ϕ

′
= ϕ′1 ∧ ϕ

′
2,

ϕ′ =
⊔

k: β ϕ
′
1, andϕ′ =

d
k: β ϕ

′
1.

Consider the caseϕ′ = ϕ′1 ∨ ϕ
′
2. Assume thatσ(ϕ′, t′, x) = σ(ϕ′1 ∨ ϕ

′
2, t
′, x)

holds. By our induction hypothesis we have both

σ(ϕ′1, t
′, x) −→ ϕ′1[t

∗/x] and σ(ϕ′2, t
′, x) −→ ϕ′2[t

∗/x].

Since both our substitutions are defined in terms of substitutions for atomic formu-
las it follows thatσ(ϕ′1∨ϕ

′
2, t
′, x) = σ(ϕ′1, t

′, x) ∨ σ(ϕ′2, t
′, x). Thus at least one of

σ(ϕ′1, t
′, x), σ(ϕ′2, t

′, x) holds and, accordingly, at least one ofϕ′1[t
∗/x], ϕ′2[t

∗/x]
holds. Henceϕ′1[t

∗/x] ∨ ϕ′2[t
∗/x] holds. The caseϕ′ = ϕ′1 ∧ ϕ

′
2 is similar.

Next, consider the caseϕ′ =
⊔

k: β ϕ
′
1. Assume that the premise of our desired

implication holds:

σ(ϕ′, t′, x) = σ
(
⊔

k: β

ϕ′1, t
′, x

)

=

⊔

k: β

σ(ϕ′1, t
′, x).

Then there isy ∈ Skβ such thatσ(ϕ′1, t
′, x)[y/k] = σ(ϕ′1[y/k], t′, x). By the

induction hypothesis it follows thatϕ′1[y/k][ t∗/x] = ϕ′1[t
∗/x][y/k] holds. Hence

by our choice ofy we obtain that the conclusion of our implication holds:

⊔

k: β

(ϕ′1[t
∗/x]) =

(
⊔

k: β

ϕ′1

)

[t∗/x].

The case of a bounded universal quantifier is similar. Noticethat then the induc-
tion hypothesis has to be applied several but finitely many times. ⊓⊔

11



It is not hard to see that the previous lemma does not hold for non-positive formu-
lasϕ′.

In [LS06] we have explicitly given a parametric eliminationset for the subset
of linear formulas in the uniform Presburger arithmetic. Weare going to use that
very set as a subset of our elimination set for the more general case discussed
here. Note that in the following lemma the elimination setE does not depend on
the logical structure ofϕ but only on the bounded quantifiers and on the set of
atomic formulas contained therein.

Lemma 7 (Elimination of One Quantifier, Linear Case) Consider a line-
ar formula ∃xϕ with parametersa1, . . . , ar, whereϕ is weakly quantifier-free,
positive, and in prenex normal form:

ϕ = Q1
k1:β1

. . . Qn
kn:βn

ψ.

Let the set of all atomic formulas ofψ that containx be

{ nix ̺i si + ri | i ∈ I1 ∪̇ I2 }.

Here, theni and ri are polynomials in the parametersa1, . . . , ar. The si are
polynomials in both the parametersa1, . . . ,ar and the bound variablesk1, . . . ,kn.
For i ∈ I1, we have̺ i ∈ {=, 6=, <,≤,≥, >}. For i ∈ I2, we have that̺ i is either
≡mi or 6≡mi, wheremi is a polynomial ina1, . . . ,ar. Letk, k∗1, . . . ,k∗n denote new
variables. Define

β∗1 = β1[k
∗
1/k1, . . . , k

∗
n/kn], . . . , β∗n = βn[k

∗
1/k1, . . . , k

∗
n/kn].

Definem = lcm{m2
i + 1 | i ∈ I2 }. For i ∈ I1 ∪ I2 define

s∗i = si[k
∗
1/k1, . . . , k

∗
n/kn] and δi = −|ni|m ≤ k − s

∗
i ≤ |ni|m.

ThenE = { (γi, ti, Bi) | i ∈ I1 ∪ I2 } ∪ {(true,0,∅)}, where

γi = (ni 6= 0∧ ri + k ≡ni 0), ti =
ri + k

ni
, Bi =

(

(k∗1, β
∗
1), . . . , (k∗n, β

∗
n ), (k, δi)

)

,

is a parametric elimination set for∃xϕ. ⊓⊔

Note that the definition ofγi is such that wheneverγi holds, then the corre-
spondingti is defined and evaluates to an integer.

Lemma 8 (Elimination of One Quantifier) Consider a univariately nonlin-
ear formula∃xϕ with parametersa1, . . . ,ar, where

ϕ = Q1
k1:β1

. . . Qn
kn:βn

ψ.

12



is weakly quantifier-free, positive, and in prenex normal form. LetE0 be the
(regular) parametric elimination set according to Lemma 7 for the subset of linear
atomic formulas inψ and the bounded quantifiers occurring inϕ. Let { pi ̺i
0 | i ∈ I } be the subset of superlinear univariate atomic formulas ofψ . Let
{ tj ̺j 0 | j ∈ J } be the set of all congruences and incongruences occurring inϕ,
where̺j is either≡mj or 6≡mj . Letm = lcm{m2

j + 1 | j ∈ J }. For i ∈ I, denote by
ui the uniform Cauchy bound ofpi, and define for a new variablek the following
strictly quantifier-free formula:

δ :=
∨

i∈I

|k| ≤ ui + m.

Then the following is a parametric elimination set for∃xϕ:

E = { (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ∪ {(true, k, [·/·], ((k, δ))}.

Proof Fix an interpretationz1,. . . , zr of the parametersa1,. . . ,ar. According to
Lemma 1 it is sufficient to show that the projectionΠ(E, z1, . . . , zr) satisfies the
following equivalence forϕ′ := ϕ[z1/a1, . . . , zr/ar]:

∃xϕ′ ←→
∨

(γ ′,t′,σ)∈Π(E,z1,...,zr )

(

γ ′ ∧ σ(ϕ′, t′, x)
)

.

We first prove the implication from the right to the left. In contrast to the lin-
ear case and due to our constrained virtual substitution, this is not trivial. Suppose
that the right hand side holds. Then for at least one (γ ′j, t

′
j, σj) ∈ Π(E, z1, . . . , zr)

the correspondingγ ′j ∧ σj(ϕ
′, t′j, x) holds. Recall thatt′j is a pseudo-term possibly

containing division. On the other hand, the validity ofγ ′j guarantees thatt′j cor-
responds to an integer. Denote that integer byt∗j . We are now going to prove the
following, which by Lemma 6 implies that ourt∗j ∈ Z is one possible choice forx,
such that∃xϕ′ holds: Letα be any atomic sub-formula ofϕ′ with bound variables
k1, . . . , kn. Let y1, . . . , yn ∈ Z be an interpretation ofk1, . . . , kn. Then

σj(α, t
′
j, x)(y1, . . . , yn) −→ α[t∗j/x](y1, . . . , yn).

If σj is the regular substitution [·/·], then the implication is trivial. Elseσi is our
constrained virtual substitution [·//·]. If α is linear, then [·//·] satisfies Equiva-
lence 9, and our implication is just the direction from the right to the left of that
equivalence. If, in contrast,α is a superlinear univariate atomic formulapi ̺i 0,
wherei ∈ I, then we make a case distinction ont∗j ∈ Z. If |t∗j | > ui(z1, . . . , zr),
i.e., it lies outside the uniform Cauchy bound ofα, then our implication follows
from Lemma 4. Otherwise, one verifies by inspection of Definition (15) that
σi(α, t

′
j, x)(k1, . . . , kn) ←→ false such that the implication holds trivially.

13



Assume vice versa that∃xϕ′ holds. Consider first the degenerate case that
Sxϕ′ = Z. If I 6= ∅, then we have (true,0, [·/·]) ∈ Π(E, z1, . . . , zr). Otherwise,
we have inherited from Lemma 7 (true,0, [·//·]) ∈ Π(E, z1, . . . , zr), and in the
absence of superlinear univariate formulas [0//x] = [0/x]. Let now∅ ( Sxϕ′ ( Z.

If Sxϕ′∩S
k
δ 6= ∅, say,z ∈ Sxϕ′∩S

k
δ , then there is (true, z, [·/·]) ∈ Π(E, z1, . . . , zr)

originating from the test point (true, k, [·/·], ((k, δ))).
Assume now that, in contrast,Sxϕ′ ∩ S

k
δ = ∅. Then we are in a situation,

where we can consider insteadϕ the formula ¯ϕ as follows: We replace inϕ each
superlinear univariate atomic formulapi ̺i 0 by the following strictly quantifier-
free formula:

(

x < −ui ∧ (pi ̺i 0)[−∞//x]
)

∨
(

x > ui ∧ (pi ̺i 0)[∞//x]
)

.

Definingϕ̄′ := ϕ̄[z1/a1, . . . , zr/ar] and on our assumption thatSxϕ′ ∩ S
k
δ = ∅, we

haveϕ̄′ ←→ ϕ′, from which it follows that∃xϕ̄′ holds. Since∃xϕ̄ obtained this
way is a linear formula we know by Lemma 7 a regular parametricelimination set
for this:

E0 ∪
{

(true,−ui + k, ((k, |k| ≤ m))), (true, ui + k, ((k, |k| ≤ m)))
∣

∣ i ∈ I
}

.

We adapt this set to our constrained virtual substitution framework by adding to
each test point the constrained virtual substitution:

Ē := { (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ∪
{

(true,±ui + k, [·//·], ((k, |k| ≤ m)))
∣

∣ i ∈ I
}

.

Recall from the definition of our constrained virtual substitution [·//·] that for
linear formulas it equals the virtual substitution used in [LS06]. It thus follows that
Π(Ē, z1, . . . , zr) is an elimination set for∃xϕ̄′. Consequently from the validity of
∃xϕ̄′ it follows that the following formula holds:

∨

(γ ′,t′,σ)∈Π(Ē,z1,...,zr)

(

γ ′ ∧ σ(ϕ̄′, t′, x)
)

.

Let (γ ′, t′, σ) ∈ Π(Ē, z1, . . . , zr) such thatγ ′ ∧ σ(ϕ̄′, t′, x). We make a case distinc-
tion on the origin of (γ ′, t′, σ). If

(γ ′, t′, σ) ∈ Π({ (γ, t, [·//·], B) | (γ, t, B) ∈ E0 }, z1, . . . , zr),

then it follows from{ (γ, t, [·//·], B) | (γ, t, B) ∈ E0 } ⊆ E that (γ ′, t′, σ) ∈
Π(E, z1, . . . , zr). In the other case, where

(γ ′, t′, σ) ∈ Π({ (true,±ui + k, [·//·], ((k, |k| ≤ m)))
∣

∣ i ∈ I }, z1, . . . , zr),
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recall from the formulation of the present lemma the definition ofm, and observe
that the following relation holds for ally with |y| ≤ m(z1, . . . , zr):

| ± ui(z1, . . . , zr) + y| ≤ (±ui + m)(z1, . . . , zr).

So there is a test point (γ ′, t′, [·/·]) ∈ Π(E, z1, . . . , zr), which differs from our
considered point only by the substitution procedure. In both cases, we have found
a test point (γ ′, t′, σ∗) ∈ Π(E, z1, . . . , zr), which differs from our considered point
at most by the substitution procedure. We are now going to show that

γ ′ ∧ σ∗(ϕ′, t′, x).

Note that this is not trivial even in the first case whereσ = σ∗ = [·//·], because
in ϕ′ there possibly occur superlinear univariate formulas. Recall that we are in
a situation where in particularγ ′ holds, which implies thatt′ ∈ Z. This allows
to apply Equivalence (9), and it follows that|t′| > ui(z1, . . . , zr) for all i ∈ I.
Hence, using Lemma 4 and Equivalence (9),σ∗(ϕ′, t′, x′) equivalently replaces
every single atomic formula inϕ′ such that we obtain our desired observation
γ ′ ∧ σ∗(ϕ′, t′, x). Hence

∨

(γ ′,t′,σ)∈Π(E,z1,...,zr)

(

γ ′ ∧ σ(ϕ′, t′, x)
)

,

which is what had to be shown.⊓⊔

3.2 Elimination Theorem

In order to possibly iterate weak quantifier elimination we next have to make sure
that the output of our elimination procedure is again univariately nonlinear; in
other words, it satisfies the defining conditions (U1)–(U3) in the introduction. In
contrast to the linear case, this observation is not trivial:

Lemma 9 Letϕ be weakly quantifier-free, positive and prenex. Assume that∃xϕ

occurs within a univariately nonlinear formulâϕ. Then replacing∃xϕ in ϕ̂ with
the result of the application of the parametric eliminationsetE from Lemma 8 is
again univariately nonlinear.

Proof Let x1, . . . ,xs be the quantified variables occurring in ˆϕ. We have to show,
that the formula

ϕ′ =
∨

(γi,ti,σi,Bi)∈E

⊔

ki1: βi1

. . .
⊔

kimi : βimi

(

γi ∧ σi(ϕ, ti, x)
)

. (19)

satisfies our conditions (U1)–(U3) wrt. x1, . . . , xs. According to Lemma 5 the
bounds of our newly created bounded quantifiers do not contain any of the variable
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x1, . . . , xs. Since each nontrivial guard originates from a regular elimination set,
all guards also satisfy the conditions (U1)–(U3). It is hence sufficient to consider
formulas of the formσi(α, ti, x) for each atomic formulaα occurring inϕ. If α is
a linear formula the statement is trivial. For the caseα is univariately nonlinear
the statement is easily obtained by inspection of the definition in (15). ⊓⊔

Theorem 10 (Elimination Theorem) The ordered ring of the integers with
congruences admits weak quantifier elimination for univariately nonlinear for-
mulas.

Proof Let ϕ̂ be a univariately nonlinear formula. We proceed by induction on the
numbern of regular quantifiers in ˆϕ. If n = 0, thenϕ̂ is already weakly quantifier-
free. So there is nothing to do. Consider now the casen > 0. There is then a
subformula of ˆϕ of one of the forms∃xϕ or ∀xϕ, whereϕ is weakly quantifier-
free. The latter case can be reduced to the former one by meansof the equivalence
∀xϕ ←→ ¬∃x¬ϕ. We may w.l.o.g. assume thatϕ is in prenex normal form and
positive. By Lemma 8, there exists a parametric eliminationsetE for ∃xϕ. That
is,∃xϕ is equivalent to

ϕ′ =
∨

(γi,ti,σi,Bi)∈E

⊔

ki1: βi1

. . .
⊔

kimi : βimi

(

γi ∧ σi(ϕ, ti, x)
)

,

whereBi =
(

(kij, βij) | 1 ≤ j ≤ mi
)

. We obtain ˆϕ′ from ϕ̂ by equivalently replac-
ing∃xϕwith ϕ′. Lemma 9 states that ˆϕ′ is again univariately nonlinear. Hence we
can eliminate the remaining quantifiers from ˆϕ′ by our induction hypothesis.⊓⊔

4 Implementation and Computation Examples

The procedure described in this paper has been implemented in REDLOG, which
stands forREDUCE logic system[DS97, DS99b]. It provides an extension of the
computer algebra systemREDUCEto a computer logic system implementing sym-
bolic algorithms on first-order formulas with respect to temporarily fixed first-
order languages and theories. Such a choice of language and theory is called a
domainor, alternatively, acontext.

Before turning to the integer context relevant for our work here, we briefly
summarize the other existing domains together with short names and alternative
names, which are supported for backward compatibility:

BOOLEAN, B, IBALP The class of Boolean algebras with two elements. These
algebras are uniquely determined up to isomorphisms.BOOLEAN comprises
quantified propositional calculus [SS03].
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COMPLEX, C, ACFSF The class of algebraically closed fields such as the complex
numbers over the language of rings.

DIFFERENTIAL, DCFSF A domain for computing over differentially closed fields.
There is no natural example for such a field, but the methods can well be
used for obtaining relevant and interpretable results alsofor reasonable dif-
ferential fields [DS04].

PADICS, DVFSF One prominent example for discretely valued fields arep-adic
numbers for some primepwith abstract divisibility relations encoding order
between values. AllPADICSalgorithms are optionally uniform inp [Stu00].

QUEUES, QQE A (two-sided) queue is a finite sequence of elements of some basic
type. There are two sorts of variables, one for the basic typeand one for
the queue type. Accordingly, there is first-order quantification possible for
both sorts. So far, the implementation is restricted to the reals as basic type
[Str06].

REALS, R, OFSF The class of real closed fields such as the real numbers with
ordering. This context was the original motivation forREDLOG. It is still
the most important and most comprehensive one [DSW98].

TERMS, TALP Free Malcev-type term algebras. The available function symbols
and their arity can be freely chosen. [SW02].

The work discussed here has been integrated into another such domain:

INTEGERS, Z, PASF The full linear theory of the integers.

This domain had been originally introduced for the methods described in [LS06].
It now naturally extends to univariately nonlinear formulas without loosing any of
its previous features.

The idea ofREDLOG is to combine methods from computer algebra with first-
order logic thus extending the computer algebra systemREDUCE to a computer
logic system. In this extended system both the algebraic side and the logic side
greatly benefit from each other in numerous ways. The currentreleaseRED-
LOG 3.0 is an integral part of the computer algebra systemREDUCE 3.8. The
implementation of our methods described here is part of the current development
version ofREDLOG. It is going to be distributed withREDUCE 3.9. Until then it
is freely available on theREDLOG homepage.1

We are now going to discuss various computations with our implementation.
The idea is to illustrate the possible application range butalso the limits of our

1www.redlog.eu
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method and of the current implementation. All our computations have been per-
formed on a 1.66 GHz Intel Core 2 Duo processor T5500 using only one core and
128 MB RAM.

4.1 Optimization

We define aparametric linear optimization problem with univariatelynonlinear
constraintsas follows: Minimize a cost functionγ1x1 + · · · + γnxn subject to

Ax ≥ b, p1 ̺1 0, . . . , pr ̺r 0.

As usual,A = (αij) is anm × n-matrix, andb = (β1, . . . , βm) is anm-vector.
For i ∈ {1, . . . , m} andj ∈ {1, . . . , n} we haveαij, βi, γj ∈ Z[a1, . . . , ak], i.e.,
all these coefficients are possibly parametric. For eachs ∈ {1, . . . , r} we have
ps ∈ Z[a1, . . . , ak][xj] for somej ∈ {1, . . . , n}, i.e., thep1, . . . ,pr are parametric
univariate polynomials. Each corresponding̺s is one of=, 6=, ≤, >, ≥, <.

Using a new variablez for the minimum such a problem can be straightfor-
wardly translated to our framework as follows:

∃x1 . . .∃xn

( n
∑

j=1
γjxj ≤ z ∧

m
∧

i=1

n
∑

j=1
αijxj ≥ βi ∧

r
∧

s=1
ps ̺s 0

)

.

Example 11 Minimize x + y subject to the following constraints:

x ≥ 0, y ≥ 0, x + y ≥ 0, and x2
+ a < 0.

The formulation as a quantifier elimination problem reads asfollows:

∃x∃y
(

x + y ≤ z ∧ x ≥ 0∧ y ≥ 0∧ x + y ≥ 0∧ x2
+ a < 0

)

.

For thisREDLOG computes within 20 ms a weakly quantifier-free equivalent con-
taining 103 atomic formulas. Setting thena = 10 and automatically simplifying
yields within 2190 ms the resultz > 3, i.e., the minimum forx+ y is 4. This final
simplification step includes in particular expansion of allpresent bounded quanti-
fiers. If we plug ina = 10 before the elimination, then we directly obtainz > 3
in only 330 ms. This amazing difference in time, we had already observed for the
full linear theory [LS06]. It can be explained as follows: Inboth Lemma 7 and
Lemma 8, we compute the least common multiple of the squares of all moduli.
For non-parametric moduli we optimize this by using insteadthe absolute values
of the moduli.

Generalizing our method discussed in the present paper toextended quantifier
elimination[Wei97c, Wei97b, DS99a, SS03] would admit to obtain in addition a
sample point for the computed optimum. The optimization addressed above with
the absolute value instead of squares could be applied in theparametric case as
well when adding to the language a symbol for the absolute value.
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4.2 Software Security

Information flow controlis one important issue in the research area of software
security [Sne05, SRK06]. The question is whether it is possible to manipulate
parameters in such a way that sensitive information can become accessible outside
of special code segments. We are going to discuss a modification of an example
from [LS06].

Example 12 For the following piece of code there is a security risk if there are
choices fora andb such thaty is assigned the value of someA[nˆ2] .

if (a < b) then
if (a+b mod 2 = 0) then

n := (a+b)/2
else

n := (a+b+1)/2
fi
A[nˆ2] := get_sensitive_data(x)

send_sensitive_data(trusted_receiver,A[nˆ2])
fi
y := A[abs(b-a)].

An attacker would be interested in a description of all values of a andb such that
this happens. This can be formulated as follows:

∃n
(

(a < b ∧ a + b ≡2 0∧ 2n = a + b ∧

((a < b ∧ b − a = n2) ∨ (a ≥ b ∧ a − b = n2))) ∨

(a < b ∧ a + b 6≡2 0∧ 2n = a + b + 1∧

((a < b ∧ b − a = n2) ∨ (a ≥ b ∧ a − b = n2)))
)

.

Our implementation computes in less than 10 ms the followingweakly quantifier-
free description:

⊔

k: |k|≤(a−b)2+2

(a − b < 0∧ a − b + k2
= 0∧ a + b 6≡2 0∧ a + b − 2k + 1 = 0) ∨

⊔

k: |k|≤(a−b)2+2

(a − b < 0∧ a − b + k2
= 0∧ a + b ≡2 0∧ a + b − 2k = 0).

4.3 Integer Roots

Example 13 Consider the generic polynomialp = ax2
+ bx + c. The question

whetherp has an integer root can be expressed by a univariately nonlinear formula
as follows:

∃x(ax2
+ bx + c = 0).
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Our elimination procedure yields after less than 10 ms the following weakly
quantifier-free equivalent:

⊔

k: |k|<|b|+|c|+2

ak2
+ bk + c = 0.

This result exactly substitutes all integers inside the uniform Cauchy bounds ofp
expanded by 1. This expansion is the least common multiple ofthe (non-existing)
moduli in the input.

This result obviously does not provide much mathematical insight. A help-
ful though imprecise intuition about our method is the following: Its intelligence
works mostly outside of the relevant Cauchy bounds. Anyway, a slight modifica-
tion of our previous example yields useful information:

Example 14 Given suitablen1, n2 ∈ Z andd1, d2 ∈ Nr{0} we look for integers
zeros ofp(x) = αx2

+ βx + γ within the interval [n1/d1, n2/d2]. This can be
formulated as follows:

∃x
(

p = 0∧ d1x ≥ n1 ∧ d2x ≤ n2

)

.

Let us consider the polynomialp = x5− 3x2 + 1. We want to know whether there
is a zero ofp in [1/3,3]. This yields the following input:

∃x(x5 − 3x2
+ 1 = 0∧ 3x ≥ 1∧ x ≤ 3).

For this, our implementation computes “false” in less than 10 ms. In fact, our
chosenp has no integer zeros at all.

This last example illustrates the fact that our method combined with automatic
simplification yields adecision procedurefor univariately nonlinear sentences.
So for sentences, we are able to obtain as a result either “true” or “false,” which
both do not contain any bounded quantifiers. Hence, concerning the decision of
sentences, we provide a considerable extension of the original Presburger frame-
work, where the user need not accept any additional syntactic constructs.

5 Conclusions

We have considered the integers using the language of ordered rings extended by
ternary symbols for congruence and incongruence. On this basis we have given a
weak quantifier elimination procedure for the set of univariately nonlinear formu-
las. The notion of weak quantifier elimination refers to the fact that the result pos-
sibly contains bounded quantifiers. For fixed choices of parameters these bounded
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quantifiers can be expanded into disjunctions or conjunctions. For decision prob-
lems they can be completely avoided. Our methods are efficiently implemented
and publicly available within the computer logic systemREDLOG, which is part
of REDUCE. The applicability of our new method and its implementationhas
been demonstrated by means of various application examples. For the future it
is planned to provide also an extended quantifier elimination procedure within
the framework considered here. Furthermore, it appears to be a promising idea
to extend the language by a symbol for the absolute value. This would allow to
considerably reduce the ranges of the bounded quantifiers coming into existence.
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