Advanced Application-Level Crawling Technique for Popular Filesharing
Systems

Ivan Dedinski and Hermann de Meer
University of Passau , Faculty of Computer Science and Mathematics
94030 Passau, Germany
{dedinski, demeer} @fmi.uni-passau.de

Acknowledgement: This project was partly funded by the
German Research Foundation (Deutsche Forschungsgemeinschaft -
DFG), contract number ME 1703/4-1 and by EPSRC, contract number
GR/S69009/01.

Abstract

P2P filesharing systems are causing the largest traffic
ammount in todays Internet, which explains the interest
of the research community. On the other hand, most of
the filesharing trafic is caused by the exchange of ille-
gal content. That makes research participation in such
systems hard, since the systems try to protect themselves
from observation. This paper presents an application
level crawling technique for current filesharing systems
that exploits the minimal openness of the filesharing sys-
tem to perform a broadband content scan with minimum
ressource usage. Such a technique can be used to con-
tinuously scan a filesharing system. The gathered in-
formation can be used by researchers for studying the
dynamics of P2P systems or by companies trying to pro-
tect their copyrights. It also could be usefull to influ-
ence the behavior of such P2P systems, e.g., by an ISP
traffic engineers. The technique was extensively evalu-
ated through a series of measurements in the eDonkey
filesharing network. The information gathered gives in-
teresting insights about the behaviour of the users doing
filesharing. Some behaviour patterns were found that in-
fluence the performance of the suggested technique in a
very positive way, proving its feasability. These patterns
indicate that a filesharing system should not only be re-
garded as a technical system, but has to be also viewed
as a social network.

1 Introduction

P2P filesharing systems are an important phenomena,
since in only few years they became the dominating In-
ternet application, if the generated traffic is considered.
These systems transfer thousends of terrabytes daily,
often causing problems for Internet Service Providers

(ISPs) by overloading their network infrastructure. The
problems are not only due to the high traffic load, bit
primary due to the hardly predictable nature of the P2P
traffic.

In client-server networks for example, where traffic is
concentrated in the direction of the servers, these servers
usually don’t change their positions or go on and off
frequently. This ensures a certain predictability which
can be used by ISPs e.g. to overprovision their net-
works at the right place. P2P traffic on the other hand is
not directed to any server but is transferred among end
users, which makes it highly dynamic. Traffic directed
to one part of the network may suddenly change its di-
rection and overload another part. Traffic bursts occur
in a hardly predictable manner, e.g. caused by a new
interesting content published by an user somewhere in
the Internet. Not only the place of occurence but also
the spreading dynamics of a certain content can not be
easily predicted since it also depends on a high number
of (not only technical but also social) factors. Here the
monitoring of the lifecycle of traffic-intensive content is
essential for a fast reaction to traffic changes (and their
prediction to some extent).

Not only ISPs are interested in getting control and in-
sight in P2P filesharing networks. Legal issues in P2P
filesharing (piracy) are also hevily discussed nowadays.
Music and film industries as well pretend that they are
loosing milions of dollars due to illegaly distributed con-
tent in P2P networks. However, it is not easy to calcu-
late this precisely, since P2P filesharing networks do not
provide any statistical information about their content
and users. A company having such information could
be able to protect its interests by starting actions against
portions of the P2P network, where its content is shared
most heavily.

And finally, researchers interested in P2P systems
and optimization of P2P traffic also need statistically rel-
evant data about the shared content in popular fileshar-
ing networks. By finding patterns in the user behavior

and observing the content dynamics, new optimization
strategies and protocols may be developed.

It is obvious that the information necessary to satisfy
the above requirements could only be collected through
continuous observation. Continuous observation means
continuously performing P2P user and content identifi-
cation [2]. It should answer the question of what content
is shared, where is it shared (who shares it) and, even-
tually, give an estimation of how much traffic will this
content produce in future. And it should answer it fast,
since P2P networks are dynamic systems, users and con-
tent are appearing and disappearig continuously.

This paper presents a measurement architecture
which can continuously perform the bigger portion of
the P2P identification task in an efficient way - it col-
lects the information on what content is shared in the
eDonkey network and how much traffic would it prob-
ably produce. The question of where is this content lo-
cated is somewhat problematic - it requires the identifi-
cation and collection of IP addresses, which is currently
illegal and will probably remain so. Nevertheless, we
argue that in current filesharing networks it is straight-
forward to identify the content locations and present a
strategy how to use this adequately, e.g. for traffic opti-
mization purposes.

In Section 2 background on hybride P2P systems is
provided. In Section 3 the architecture used with our
crawling technique is described. In Section 6 the mea-
surement setup is described and the gathered data is pre-
sented and analysed.

2 Background

Filesharing made P2P systems really popular during
the recent years. The first widely spread P2P filesharing
system was Napster [4]. Generally, it was an indexing
server where the Napster users could publish informa-
tion about the music files they were providing and search
for new files. The main advantage of Napster compared
to FTP or HTTP servers was the load distribution - the
users were downloading the content directly from each
other, the server was only used for locating the content.

Although Napster had great success, it was closed
due to legal issues. As a reaction, the P2P community
presented more resilient P2P designs like Gnutella [7] at
the beginning, then eDonkey [5], BitTorrent [5], KaZaa
[6], etc. Gnutella, a completely decentralized system,
had serious scalability problems. For this reason cur-
rently the so called hybride architectures (eDonkey, Bit-
Torrent, KaZaa, etc.) are dominating the Internet.

A hybrid architecture is a mixture of a fully decentral-
ized approach like Gnutella and a centralistic approach
like Napster. In the example case of eDonkey there are
multiple (few hundreds) of superpeers or eDonkey in-
dexing servers to which the eDonkey users can connect.

From the user perspective, the eDonkey indexing server
has similar functionality as a Napster server - it allows
the users to publish and search for files on that server
only. The eDonkey indexing servers however all partic-
ipate in a fully decentralized (Gnutella-like) server net-
work, which allows clients to extend their search to other
servers if necessary. This indexing server network has
two properties which ease the task of the observation
technique presented in this paper. First, it is of a much
smaller size as the whole P2P network, which makes it
easy to track. Second, it stores most of the information
the observation system is interested of, see Section 4.

Since the hashID of a file is unique with very high
probability, but the file name might not be unique, eDon-
key uses a two step query mechanism. A client first
starts a query for file names containing certain key-
words, e.g. “Madonna, mp3”. The eDonkey indexing
server replies with a list of names containing the key-
words specified, the corresponding hashIDs and some
additional data (like file size, number of sources for the
file, number of complete sources) which is helpful for
the client to choose which file to download. The client
then chooses a file and sends its hashID to the indexing
server. The server responds with a list of clients provid-
ing that file. The quering client then contacts some or all
of these clients and starts the download. This two-step
query mechanism allows to query content names and
properties without collecting any IP-addresses of pro-
viding peers, which could lead to legal problems.

One of the reasons why eDonkey is so successfull
is the possibility to download a particular content from
many providing clients simultaneously. This feature is
called Multi Source Download Protocol (MSDP). To
be able to parallelize the download like this, each file
is splitted in chunks of equal size and each chunk can
be transferred independently from the others. Parallel
downloads requires strict checksumming to ensure that
chunks downloaded from different clients belong to the
same file. Thus every chunk and also the whole file is
uniquely identified by a checksum called hashID. Bit-
Torrent [5] is another popular P2P network that heavily
relies on MSDP.

Obviously, the goal of MSDP is to distribute the
traffic load fairly among the participating peers and to
utilize any available bandwith, causing that content is
transferred as fast as possible. To be able to do this, P2P
clients need a mechanism to learn other clients for addi-
tional parallel connections. In the eDonkey network this
is done by gossiping - if a client A is already download-
ing a content X from client B, A could ask B to tell him
all its sources (their IPs) for that content X. By doing
this procedure recursively, an observation system could
identify the IPs of all peers currently downloading the
content X This is important, since such information can

not easily be obtained from elsewhere, e.g. from the
eDonkey indexing servers, see next paragraph.

Since a large part of the eDonkey traffic is illegal,
the eDonkey servers implement a number of protective
mechanisms against observation and attacks like DOS.
First of all a query has to contain at least one keyword
and returns up to a certain limit of results, mostly 300.
Subsequent queries for the same keyword mostly return
the same result - the result could only differ if the re-
sult set on the server has changed. So it is not easy
to query all files containing a keyword, if the number
of files is higher than the limit. Second, a client can
not start queries too often, because the eDonkey server
would put it at a blacklist for a while. The blacklisting
times are set per server basis and can vary up to several
hours. These two measures not only protect the eDon-
key network from overloading, but also make the reverse
resolution of the file providers hard - it is not easy to dis-
cover all the content shared by a client with a given IP.
Another reason for this is that the big majority of eDon-
key clients in the Internet do not answer queries about
the files they share, although such a query is provided
by the eDonkey/eMule protocol.

3 Architecture Basics

This section presents an application level crawling
architecture performing much of the observation tasks
specified in Section 1 - it discovers as much as possi-
ble popular content in the eDonkey network for a given
time. It collects information about the discovered con-
tent like content name, content hash ID, currently avail-
able sources, complete sources, etc. The popularity of
the content is defined by the currently available sources
for this content in the network. Another important cri-
teria is the number of incomplete sources, since it indi-
cates how many clients are still trying to download the
content and are thus producing traffic.

A novelty of the architecture presented here is its
ability to not only make snapshot of what is currently
shared in the P2P network (what has been done many
times in the past, e.g. [3]). In addition, it can continu-
ously monitor the P2P network - efficiently in terms of
consumed bandwidth and processing ressources. This
was the reason for adopting the application level crawl-
ing technique. Compared to passive P2P traffic iden-
tification techniques [2], it is much more efficient and
reliable.

However, in order to be less dependent on a spe-
cific P2P system, the crawling technique relies on a very
small subset of the eDonkey protocol, which is required
for adequate content location by P2P users anyway. This
subset (at least in similar form) is currently present in
most of the popular filesharing systems nowadays, so
the suggested architecture would be applicable to them

too, with small modifications.

In this paper we are only interested in the content
names and properties, but are not trying to identify IPs
providing this content. Storing these data would be a le-
gal violation. However, having the names and hashIDs
of the popular content, it would be possible to find also
the providers of that content because of the MSDP prop-
erties, see Section 2.

For this architecture to work, four important prob-
lems need to be solved. First of all a mechanism has
to be implemented, which can issue queries that deliver
popular content names as a result. Unpopular content
is not of interest, it only produces very small portion of
the P2P traffic, but according to studies like [6] it repre-
sents the big majority of the total content shared. Conse-
quently, focusing on the popular content would allow a
crawling system to find the biggest traffic producers fast.
Second, the blacklisting problem (see Section 2) has to
be eliminated, since it limits the throughput of the crawl-
ing system. Third, it has to be ensured, that each query
returns a number of results which is close to the upper
result limit, to reduce the overhead caused by a query
and again increase the throughput. Last but not least,
the amount of duplicate results has to be kept small.

eDonkey server

Crawler_1 |Crawler 2 ... |Crawler X

Keyword Index

Figure 1: Crawling architecture.

The architecture suggested here is shown in Figure 1.
A set of Crawlers connected to a KeywordIndex is used
to scan one eDonkey server. The Crawlers are modi-
fied eDonkey clients, which query an eDonkey server
in parallel. A crawler sends queries with low frequency
to avoid blacklisting. But by parallelizing the crawling
process, the throughput of the whole system can be in-
creased. Note that a crawler does not necessary need to
run on a separate machine, it just requires a separate IP
address. The frequency is adaptable - at the beginning
all crawlers start at maximum frequency. If a crawler
is blacklisted, it immediately informs all other crawlers,
which reduce their frequences by a given amount. In the
scans run for this paper the frequency was halved each
time a crawler has been blacklisted, which led to satis-
factory estimation of the optimal frequency - about one

query per 30 seconds. However more complex and pre-
cise adaptation algorithms may be used.

All the crawlers are coordinated by the Key-
wordIndex, which provides the keywords to query for.
It also gathers the results collected by the crawlers and
feeds them back in the query process, as described in
Section 4.

A set of crawlers connected to a KeywordIndex can
be used to scan one particular eDonkey server. For scan-
ing more than one eDonkey server, multiple independent
Crawler groups with a separate KeywordIndex can be
used. Since Crawlers do not store state information ex-
cept for a single query, a Crawler could change its Key-
wordIndex if necessary. This is especially usefull in case
of blacklisting, when the Crawler needs to connect to a
different eDonkey server and query further.

4 The Query Process

A scan of an eDonkey server consists of many key-
word query processes which are executed in parallel by
the crawlers. When a crawler starts a keyword query
process, it first contacts the KeywordIndex and requests
a keyword to query. After receiving the keyword, the
crawler sends an eDonkey query to the eDonkey server.
It then passes results returned by the server back to the
KeywordIndex and starts a new keyword query process.

The KeywordIndex parses each content name in
the query results received by a crawler and extracts
the keywords contained in the name. A simple ex-
traction scheme is used where as delimiters all non-
alphanumeric characters are used. The extracted key-
words are stored in an index sorted by their frequency.
When a crawler starts a new keyword query process
and requests a new keyword from the KeywordIndex
the KeywordIndex answers with the keyword, which has
been most frequently found in content names but was not
yet queried. The storage index at the KeywordIndex as-
sures, that a keyword is queried only once at one eDon-
key server.

This keyword feedback mechanism utilized by the
KeywordIndex tries to follow the naming behaviour of
the users connected to the eDonkey server and does not
generate artificial keywords like in [3]. The decision
which keyword to query next is motivated by the intu-
itive assumption, that quering popular keywords would
also lead to popular content. The measurements pre-
sented in Section 6 strongly indicate that the assumption
is correct. The feedback mechanism also relies on the
assumption that there are no valuable groups of content
names with disjunct keyword sets, so that the feedback
mechanism could stuck into one of these groups. The
gathered results argue for this assumption.

Another issue which is important for the query per-
formance as stated in Section 1 is the result limit im-

posed by an eDonkey server. Since the result limit may
be different for every server, it has to be adaptively deter-
mined. A Crawler assumes for the result limit the high-
est result size it has received from the eDonkey server.
If the result limit for a query was reached, the crawler
has to ensure, that there are no results which the server
did not return. E.g., if a crawler queries the keyword
“mp3” it will receive only up to 300 results (if 300 is the
result limit). So there will be probably thousands of re-
sults not received by the crawler. The way to get to these
results is to do a more precise query. One strategy is to
use keyword combinations, but it does not give guaran-
tees, that the whole result subspace will be covered. The
eDonkey network however provides a convinient set of
query options. E.g., one can query all files containing
a set of keywords with filesizes between a given upper
and lower bound. The filesize bounds allow a very fine-
grained division of the result subspace. The architecture
uses a binary search technique defined by Algorithm 1
to retreive all results matched by a query with high prob-
ability.

Algorithm 1: query(keyword A, lower bound L,
upper bound U)

Input : keyword A, lower bound L, upper bound
U
Output: result set R
Data : temporary result set R
estimated server result limit L
begin
R; = query A at eDonkey server if
size(Ry) >= Liand U — L > 2 then
| Y =query(A, U, L/2) U query(A, L/2, L)
else
LY =R
end

5 Crawling Strategy

A possible observation strategy would involve two
processes, continuously done in parallel. The first pro-
cess would collect the popular content names and their
attributes, as described in Section 3. The second one
would focus on the most popular content (about 1 per-
cent) and would query the IPs of the providing peers re-
cursively by using the MSDP features.

The first process provides more general information
about the content currently shared in the network. It can
perform global scale observations and can up to certain
extent measure the content dynamics in the network -
the so called content churn.

The second process can be seen as a lens - after the
content of interest has been identified by the first pro-

cess, the second process can zoom into and provide de-
tailed information of who shares it, where and when, and
also with what intensity.

6 Measurement Results and Evaluation

The crawling architecture presented in Section 3 was
implemented and started in the PlanetLab network envi-
ronment [1]. PlanetLab was used because of the IP va-
riety necessary to increase the throughput of the system.
During the one week of the experiment one of the bigger
eDonkey servers (with about 20 - 10° files in average,
changing daily) was scanned. The experiment started
with 30 crawlers, but during the one week some of the
crawlers disconnected, since their PlanetLab nodes were
rebooted or went offline. Only about 20 nodes finished
the experiment.

The first important question is what is the netto speed
of the crawling process. Netto means how much files
after duplicate elimination are found per unit of time.
Figure 2 shows the netto learning rate of one particular
crawler, which was continuously online throughout the
experiment. This is more representative, than the learn-
ing rate of the whole system, since the latter is influ-
enced by node feilures in PlanetLab. It can be observed
that the netto learning rate decreases with time, since
the crawler searches for less popular keywords. Also
the chance to find a duplicate increases proportionally
to the number of already gathered files.

100000 —

Iea‘rni ng raté per s ngie crawl er‘ —
90000 [Bl

80000 - b
70000 - — [b
60000 - b
50000 [Bl
40000 Bl
30000 [b
20000 [b
10000 - b
0 I I I I I I I

0 2 4 6 8 10 12 14 16
time [time unit = 10 hours]

number of files/time unit

Figure 2: Learning rate for one crawler.

The second important property of the crawling sys-
tem is its ability to find important (popular) content first.
This is illustrated by Figure 3, where the cumulated
availability values per 106 files is shown in chronolog-
ical order. Figure 3 also shows the availability graph
after excluding the completely unpopular files (having
availability of 1). The graph without unpopular files
is clearly exponential, proving the efectiveness of the
crawling strategy. It is also interesting that the learning
rate for completely unpopular files seems to be constant.

In average a file name consists of about 5.4 keywords.

4.5e+06 T .
)) : _?_II files ——=
4e+06 fileswith availability >2 —— |

3.5e+06 b
3e+06 Bl
2.5e+06 b
2e+06 b
1.5e+06 Bl
1e+06 b
500000 Bl

accumulated availability / 1000000 files

0 I I I I
0 5 10 15 20 25

1000000 files/ bar, accumulated chronologically

Figure 3: Availability / Time Diagram.

This is also roughly the ratio between brutto and netto
learning rate and defines the lookup overhead of the sys-
tem. Queries returning duplicates however have also an
advantage: a file has more than one chance to be found.
This is important, since the system is dynamic and users
constantly go offline and online.

References

[1] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an overlay
testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3-12, 2003.

[2] 1. Dedinski, H. DeMeer, L. Han, L. Mathy, D. Pezaros,
J. Sventek, and Z. Xiaoying. Cross-layer peer-to-peer
traffic identification and optimization based on active net-
working. In Proceedings of the 7th International Working
Conference on Active and Programmable Networks. N/A,
2005.

[3] F. Fessant, S. Handurukande, A. Kermarrec, and L. Mas-
soulie. Clustering in peer-to-peer file sharing workloads.
2004.

[4] P. Gummadi, S. Saroiu, and S. Gribble. A measurement
study of napster and gnutella as examples of peer-to-peer
file sharing systems. 2003.

[5] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber,
A. Hamra, and L. Garces-Erice. Dissecting bittorrent:
Five months in a torrent’s lifetime. 2004.

[6] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Decon-
structing the kazaa network, 2003.

[7] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In Proceedings of the First Interna-
tional Conference on Peer-to-Peer Computing, pages 99—
100, 2001.

