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Abstract

The quality of service (QoS) of a distributed hash ta-
ble (DHT) lookup is gaining importance with the growing
number of services adopting the P2P paradigm. Examples
of applications that could largely benefit from an improved
timeliness and reliability of message exchange in DHTs are
Domain Name System (DNS), or even newer types of dis-
tributed location-based services in a mobile environment.
The bursty effects of Internet traffic on latency, congestion,
and loss can change the short term state of the overlay links
in the DHT. The quick changes to overlay link/node states
cannot be taken into account while structuring long term
P2P routes. This paper proposes self-organizing mecha-
nisms to improve the QoS for DHT lookups, without chang-
ing the structure of the DHT network. Different kinds of
lookup replication techniques are implemented on top of the
DHT to restrict the influence of the heterogeneous capabil-
ities of the overlay routes while offering self-adaptive and
robust high performance lookups.

1 Introduction

Distributed hash tables (DHTs) such as Chord [1], Pas-
try [2] or CAN [3] are theoretical solutions to build large,
very scalable, and efficient P2P networks. However, they
still face major challenges to be applied to the large Inter-
net and for more industrial applications. Although of being
able to provide a ”short” overlay route to any peer within
a limited number of overlay hops, they hardly cater for the
heterogeneity and unstability of Internet end-to-end paths.
DHTs structure large networks based on a dry abstract view
of the Internet. They rely on overlay routing decisions based
on long term abstract identification of logical neighbors.
The logical overlay route provided by the DHT is mapped
onto a physical route in the underlying physical network,

where one overlay link might span over several physical
hops. DHTs construct a homogeneous structured overlay
network, basing on heterogenous nodes and links. When
faced with bursty and highly correlated behaviors like si-
multaneous requests to one node, or routing requests along
the same direction, both overlay links and nodes might im-
pose different delays on these requests, varying accordingto
their capabilities. This means that even with a limited num-
ber of overlay hops traversed by DHT lookups, the end-to-
end delay might vary strongly, resulting in highly variable
quality of the overlay routes.

In this paper the QoS of DHT lookups is improved by
adding a new self-organizing lookup mechanism on top of
the DHTs without changing its topology. These special
DHT lookups are calledSelf Organizing Lookups in DHTs
(SOLD).

The main purpose of SOLD is to increase the interaction
performance between peers in an existing DHT network,
where stability of routes and nodes cannot be guaranteed,
but where timely messages are essential. Self-organization
is applied at the lookup level, to deal with the unstability of
the overall structure of the DHT, with the aim of reaching
a given peer as fast as possible. This should enable fast
transmissions, especially for applications requiring quick
reliable control/signalling messages or other small informa-
tion, like pointers, values, or text. SOLD provides both, a
solution to push information to nodes and also to pull infor-
mation from nodes, with raised performance. The structure
offered by DHTs has allowed a new type of middleware-
like functionality of the DHT layer. However several indus-
trial scale applications have come short to adopting the P2P
paradigm, partly due to the lack of timely assurance, among
other reasons.

An example application that requires time-sensitive
lookups is the implementation of the Internet’s Domain
Name Service (DNS) using DHTs. Cox et al. [4] state that
besides the advantages of this effort, like fault-tolerance or



load-balancing properties, there is the problem of high la-
tencies in the lookups.

Further example applications are location based services
(LBS), requiring spatio-temporal validity of informationre-
trieved. In a P2P-based LBS [5] lookups rely on strict tem-
poral restrictions (e.g. looking up the next petrol station
along a motorway). Similarly, in [6] DHTs are used as a sig-
nalling mechanism to provide a middleware, capable of or-
ganizing heterogeneous wireless cells in 4G scenarios. The
P2P model is used to cater for the heterogeneity of the infor-
mation stored among different location servers. A multiple-
radio mobile device discovers the different wireless cells
surrounding it (e.g. GSM, UMTS, WLAN, WiMax, etc.)
by looking them up through a DHT. The P2P paradigm is
explored to bring technologies together, and to provide a
common interface to all mobile users, who require looking
up information managed by different operators, data-bases,
and with various signalling technologies. The state of the
wireless cells (blocking rate, used capacity, etc.) would rely
on fast lookups. The mobile user looks-up available wire-
less access points along his movement path.

This paper is structured as follows. In Section 2 the com-
plexity of providing quality of service (QoS) in DHTs is
discussed. Furthermore, the self-organization aspects and
design decisions behind SOLD are presented. The detailed
implementation and design of SOLD are presented in Sec-
tion 3. It is shown how SOLD is applied to a vanilla Chord
structure to obtain a better QoS for lookups. Subsequently,
the emulation of SOLD in the PlanetLab [7], using about
350 real machines, is compared with Chord in Section 4.
The emulations carried out on this powerful testbed exploit
the real behavior of the Internet linking those machines. In
Section 5 other related work is explained and compared to
SOLD. The conclusions of this paper are summarized in
Section 6.

2 Using Self-Organization to Provide QoS in
DHT Routing

In this section the increasingly important role of the QoS
of DHT lookups for applications adopting the P2P commu-
nication model is exposed. Our design principles are based
upon self-organization criteria whose advantage is keeping
the complexity of supporting QoS low, while fulfilling the
aim of obtaining the best out of an administration free P2P
system [8].

QoS is defined as a set of service requirements that need
to be met by the network while transporting a flow [9]. This
could be traced through some measurable metrics such as
delay, jitter, bandwidth, and probability of loss. The need
to guarantee or track each of these measurable metrics de-
pends greatly on the application needs. In the open Internet,
however, finding better routes is about making an informed

decision on which path to take. This usually involves track-
ing the most recent view of the available resources within
an autonomous system, closely administered. A better route
should exclude weak links, since delay is an additive met-
ric, and bandwidth a concave one. Dissimilarly, DHTs offer
a large administration-free system with its own organiza-
tion and structure. Adding QoS awareness is rather complex
and unscalable. Instead, DHTs create an abstract structure
where overlay links exhibit heterogeneous QoS conditions.
In the administration free homogeneous DHT, reaching low
latency interaction levels between peers is our main goal.
This paper solves mostly this issue, in addition to adding
reliability to lookups. Depending on the importance of the
messages exchanged between peers, some might require a
higher reliability or fast delivery. In other terms, the de-
lay sensitive lookups would expect to be routed through the
fast routes, which is similar to what QoS routing does in the
Internet [9]. In contrast to QoS routing, SOLD provides a
mechanism to discover better routes without attempting to
discover or measure the state of the overlay links. It treats
the underlaying overlay structure, as a black box. However,
this black box is not assumed to have a given predictable be-
havior. For this purpose, the probes sent-in are a heterarchy
of independent processes trying to get the best out of this
system [10]. This principle is based on self-organization.

Self-organization [11] is the ability for a group of given
elements to create structure with a higher goal that needs to
be fulfilled. We talk then of an emerged structure. When
looking at a group of peers, DHTs create structure with the
possibility to reach each peer from any peer while keeping
minimum routing information. On top of such a structure,
this paper proposes to launch diverse lookup messages that
insure exploring concurrent paths along the underlying P2P
structure. For each lookup, a group of messages is created
to reach the goal of exhorting the system to find out the
best path in that structure. The messages progress indepen-
dently, in a fire-and-forget manner along the overlay hops,
to reach the same end of the black box. This diversity of
overlay end-to-end paths is limited by the available rout-
ing information provided by the DHT (e.g. number of fin-
gers in a finger table). Similar to the self-organizing aspect
of an ant algorithm [10], a group of cooperating ants (or
messages) independently try to reach, from a given source,
their destination through cooperation. The ants leave a no-
ticeable trail along the visited nodes, which allows them to
interact and cooperate, by following the strongest trail, i.e.
the nodes where more ants have left a trail. However, dif-
ferently to the ant algorithm, in SOLD the trail left does
not strengthen the choice of a given path, but rather lead
to the ants making sure to stay away from this path. The
group of messages already have a given direction specified
by the existing DHT structure. The cooperation between
the messages allows the group to detect the best route by



staying diversely spread, but in a directed way (forming a
structured flooding). This is assuming that the overlay link
quality will not be remembered after the lookup is finished.
The emergence of the best path changes to keep the pertur-
bations inside the black box (DHT structure) hidden from
the lookup process. Next, the details of how the lookup is
generated and how it progresses are explained.

3 SOLD: Self-Organizing Lookups in DHTs

In this section the proposed algorithm ”self-organizing
lookups in DHTs” (SOLD) is described. SOLD is imple-
mented on top of an existing DHT, adding new functional-
ity without changing its topology. DHTs provide different
overlay routes from one overlay node to another. SOLD ex-
ploits the diversity of routes by replicating lookups in dif-
ferent ways usinghorizontal replicationandvertical repli-
cation. Horizontal replication aims at limiting the effects
of unavailable links or links with low QoS capabilities, and
excluding routes spanning over failing or temporarily over-
loaded overlay nodes. Vertical replication limits the delay
of a lookup by replacing lookup datagrams lost between
two overlay hops within a single RTT. Compared to a re-
transmission, when using an ARQ mechanism, the vertical
replication can provide a preemptive correction mechanism
on a per hop basis. Once the target node is reached, a re-
sponse is also replicated and returned on various routes to
the originator to consider slow (or even not available) direct
connections or asymmetric Internet links.

In this section the reader is expected to be familiar with
the basic concepts of Chord [1] and its terminology because
it is used as an example DHT to explain the mechanisms of
SOLD.

3.1 Definitions

The node initiating a lookup is called theoriginator
nodeof the lookup and the node which is responsible for
the required information is called thetarget node. Other
nodes belonging to the overlay route are calledintermediate
nodes. If an originator node queries information within the
DHT the whole process is called alookup process. Every
lookup process consists of several simultaneously launched
lookup threadstraversing different overlay routes in a co-
operative manner and transporting the same request. A sin-
gle message passed over an overlay link is called alookup
message. The response from the target node to the origina-
tor node is called aresponse process, which also consists
of severalresponse threadsand response messages. Ev-
ery message has amessage identifieridentifying it as cor-
responding to a certain thread of a process. Every thread
stores one message identifier at every overlay node it passes
by, to enable communication and therefore cooperation in

between the different threads. This message identifier is
stored with asoft stateof a few seconds.

3.2 Horizontal Replication - Autonomous
Cooperating DHT Lookup Threads

Within an DHT different redundant routes to a target
node with different performance attributes are provided.
The mechanism of utilizing these different routes by per-
forming autonomous cooperating DHT lookup threads is
called horizontal replication. The threads are autonomous
because they are able to succeed the lookup process indi-
vidually. They are cooperating by storing and reading iden-
tifiers at the passed overlay nodes and making sure to be
routed along separated overlay routes by bouncing off each
other. Since the physically fastest lookup thread succeeds
first, the originator node receives a response with the lowest
delay of all cooperating lookup threads. A lookup process,
indicated by an originator node, consists ofτ autonomous
cooperating, simultaneously launched lookup threads trans-
porting the same request. The lookup threads are sent to the
τ best fitting overlay successors of the originator node. In
Chord this would be the best fitting fingers of the originator
nodes finger table. If there are not enough unused succes-
sor nodes left, the amount of autonomous lookup threads is
reduced. Every single lookup thread performs a full lookup
procedure, starting at the originator node and finishing at
the target node in a usual case. If more lookup threads of
one lookup process are routed over the same intermediate
node, they are bouncing off each other, utilizing different
routes to the target node. The most promising successors
of the intermediate node are chosen to forward the lookup
threads. If there are not enough appropriate successors left
for to find a separated route for a lookup thread, the thread
terminates itself. A concrete example of this mechanism is
depicted and explained later in this paper in Figure 1.

The target node usually receives more than one lookup
thread belonging to the same lookup process. But only
the fastest, first arriving lookup tread of this lookup pro-
cess triggers the response to the originator node. All other
messages are discarded.

The amount of cooperative lookup threadsτ is a positive
number greater or equal to1. If τ is set to1 no horizontal
replication is performed. The maximum ofτ is the amount
of overlay successors of the originator node, e.g. the num-
ber of fingers in Chord. The appropriate value forτ has
to be determined especially for a certain time-sensitive ap-
plication and its environment as it depends on the structure
of the physical network, the number of nodes in the DHT
environment, the traffic constraints and the desired lookup
latency. If available,τ can be adapted to the priority of the
lookup. A higher value ofτ increases the probability of a
smaller latency and the robustness of the lookup. In Fig-



Figure 1. An example of autonomous coop-
erating DHT lookup and response threads in
Chord.

ure 1 the cooperation of autonomous cooperating lookup
threads is shown. Chord is chosen as DHT environment
to illustrate the cooperation because of its popularity. Asa
simple exampleτ is set to3. A complete lookup process
with the overlay hops of all threads is shown in (a), (b) and
(c). In each Figure the lookup messages of the current steps
are drawn in black color and the lookup messages of previ-
ous steps are drawn in gray color. The three lookup threads
can be distinguished by their different line patterns. Figure
1 (a) shows the launch of the cooperating lookup threads
at the originator node. In Figure 1 (b) it can be seen that
at the intermediate nodes the lookup threads take the route
to the best fitting fingers. In this concrete situation two of
the lookup threads are routed over the same intermediate
node. The second lookup thread recognizes the situation
because of the stored message identifiers at the intermedi-
ate node. In Figure 1 (c) it is shown that this second thread
is routed to a different finger, keeping itself separated from
the first one. All autonomously launched lookup threads fi-
nally reach the target node. It is important to see that the
three lookup threads are likely to reach the target node at

different times since the arrival time does not depend on the
number of overlay hops. However, only the first arriving
lookup thread triggers the response to the originator node
while the other lookup threads terminate themselves.

3.3 Horizontal replication of the response

The transmission of the response from the target node to
the originator node is also replicated in a response process
to keep the latency of the entire lookup as small as possible.
However, the horizontal replication mechanism is slightly
modified for the response. The first of theτ horizontal repli-
cated response threads is sent directly to the originator node,
since its IP-address is known. The direct route is assumed
to be the fastest in vanilla Chord, but other routes should be
taken in account. The direct route can be congested, slow or
even unavailable if one or both of the nodes are firewalled.
The second lookup thread is sent back over the route that
has been used to send the lookup. This route is expected to
be fast since it was the fastest found route towards the target
node. However, there can be asymmetric links involved in
this route, slowing the traffic down in the response direc-
tion. The other (τ − 2) response threads are horizontally
replicated like described in Subsection 3.2. In Figure 1 (d)
the horizontal replication of a response is shown. The line
in the grey color depicts the first succeeding lookup thread.
The back colored lines depict the different response threads.
They can be distinguished by their different patterns. As ex-
plained in this section we find a direct routed thread and a
thread routed back on the lookup route. The third thread is
routed to the originator node, avoiding the direct way, as it
is already used.

3.4 Vertical Replication - Machine-Gun
Messaging

With this mechanism lookup and response messages are
repeated in a fast manner. In this section response mes-
sages are referred to as lookup messages for simplicity. If
a lookup message fails to arrive properly at the next hop,
one of its backup messages arrives after short time, within
one RTT. This mechanism is called vertical replication or
machine-gun messaging.

In common implementations of DHTs TCP is used to
send keep alives and to transmit lookups. If a lookup mes-
sage gets lost or is corrupted a retransmission of the mes-
sage is necessary. In TCP the corresponding segment will
be resent after a timeout, which depends on the measured
RTT on the physical end-to-end link. Since one overlay hop
may span over several physical hops this timeout adds ad-
ditional delay to the lookups. To lessen the latency of the
lookups this paper suggests the use of replicated UDP pack-
ets for DHT lookups.



Every node sendsµ equal lookup messages of the same
lookup thread to a successor node whereµ is a number
greater or equal to1. If µ is set to1, there is no vertical
replication. Letx be the probability of one single message
getting lost or corrupted. It is assumed as a simplification
that these events are independent from each other. Ifk equal
messages are sent, the probability that all messages get lost
is xk, where1 ≤ k ≤ µ and0 ≤ x ≤ 1. According to
this exponential behavior of the probability it is important
to resend the first few messages over each hop very fast to
have a backup message arrived a few moments after the last
sent message.

On the other hand, the receiver and the network should
not be flooded with messages. When problems occur, like
congested networks or overloaded nodes, a back-off mech-
anism is needed. To solve this problem the machine-gun
messaging mechanism increases the time in between two
repeated lookup messages exponentially. Messagek is sent
afterγ ∗ (2k−1 − 1) ms, whereγ ms is the initial gap in be-
tween the first and the second message with1 ≤ k ≤ µ and
γ > 0. If e.g. γ = 1 andµ = 6 the sending times would be
[0, 1, 3, 7, 15, 31] ms. Additionally acknowledgements are
used to reduce the amount of sent machine-gun messages
sent over one overlay hop. Every first arriving lookup mes-
sage of a thread is acknowledged by the receiving node. If
the acknowledgement reaches the sender, it stops immedi-
ately sending further machine-gun messages over this hop.
If the acknowledgement does not reach the sender for some
reason, the wholeµ machine-gun messages are sent. These
acknowledgements do not confirm the lookup itself. They
are just used to reduce the number of sent machine-gun
messages.

The values ofγ andµ depend on the RTTs measured in
the transport network of a certain application environment
and the desired lookup latency for the application.γ should
be a value less than the RTT, so that the first few lookup
messages are sent within one RTT.µ should not be cho-
sen too small, because it would be more likely that all of
the lookup threads get lost. On the other hand, it would be
not reasonable to send further machine-gun messages, if a
lookup resulting from it would exceed the required latency
time. Thus,µ should be chosen in a way, thatγ ∗(2µ−1−1)
ms, which is the time of sending the last machine-gun mes-
sage, is smaller or equal to the tolerated lookup latency of
the application.

It is important to see that lookup messages are trans-
ported in very small UDP packets, near the lower bound
of an ethernet frame size. Replication of this packets does
not demand too much additional performance from the net-
work, compared to ”usual” traffic. The overhead of the
machine-gun messaging is evaluated in Section 4.

The target node usually receives more than one lookup
message belonging to the same lookup process. But only

the fastest, first arriving lookup message of the first lookup
thread triggers the response to the originator node. All other
messages are discarded.

Figure 2. The machine-gun messaging mech-
anism with µ = 7 and γ = 1.

In Figure 2 the machine-gun messaging mechanism is
visualized,µ is set to7 andγ is set to1. The figure depicts
that the first message is sent at time 0 and the last one after
63 ms.

3.5 Soft State

Every lookup thread stores a message identifier at every
node it passes by. It is stored with a soft state forσ seconds.
When the soft state times out, the identifier is deleted. The
soft state is reset toσ every time a repeated message of a
certain thread arrives at a node. The identifiers enable the
cooperation of the different threads and messages. Threads
communicate by examining the identifiers of a node. Dif-
ferent threads of the same process are bouncing off each
other. Messages belonging to a thread that already visited
the node terminate.σ has to be chosen to be long enough
for the identifier, to be by the latest arriving lookup mes-
sage of the corresponding lookup process. Ifσ is chosen to
be too short, a late arriving lookup message is not able to
identify itself as a replicated message and can cause some
overhead. This message would be routed on the best fitting
route to the target node and trigger a new response, which
would be finally discarded by the originator node.

4 Evaluation

In this section Chord and SOLD are evaluated on Plan-
etLab [7]. Chord in its simple form is also used to cre-
ate the structure of the P2P network on which SOLD has
been tested. The goal of the experiments is to show the per-
formance of lookups in both vanilla Chord and comparing
SOLD lookup techniques used top of it.

4.1 Methodology

PlanetLab has been used as the evaluation environment,
to create a large globally distributed P2P network, where
the influence of real network heterogeneity is essential for
evaluating the performance of SOLD. The testbed included



about 360 PlanetLab nodes, located all over the world, with
different bandwidth limits and CPU power. On each phys-
ical PlanetLab node 10 virtual DHT nodes were started in
order to reach a total DHT node count of about 3600 nodes.
The hash identifiers of the DHT nodes were distributed ran-
domly, not depending on their physical neighborhood, in
order to have more long distance (non-local) routes.

Several virtual DHT nodes had to be shut down dur-
ing the experiments. Some nodes turned out to be blocked
by firewalls allowing connectivity only in one direction,
or not to every IP address, thus being unable to build up
their finger tables. Other nodes were running under heavy
stress conditions (heavy CPU workload, high packet drop-
ping rate), loosing all their fingers. All these nodes were
discovered and shut down automatically in order to have
a stable set of nodes for a clear comparison of SOLD to
vanilla Chord. During the experiments the number of active
nodes varied. Overall863/739 DHT nodes were shut down
for Chord/SOLD,respectively, leading to2740/2860 DHT
nodes that remained functional until the end of the experi-
ments.

Two experiments were performed for comparison, one
with SOLD and one with standard Chord. Each experiment
lasted for about12 hours to cover network traffic changes
with their effects on SOLD and Chord. The experiments
scenarios were generally the same for both runs, except for
the load changes on PlanetLab. For SOLD the following
values were set:

• The amount of cooperating treadsτ was set to4.

• The amount of machine-gun messagesµ was set to9.

• The initial gap between the first two machine-gun mes-
sagesγ was set to10 ms.

• The soft stateσ of the placed information at every
passed node was set to10 seconds.

First, in a stabilization period of about500s the DHT
ring bootstrapped and each DHT node filled its fingertable.
Most of the nodes that had to be shut down were discov-
ered during this period. After the initial stabilization inter-
val, each DHT node started sending lookups for randomly
chosen hash IDs in the hash ID range from0 to 214. Ev-
ery node sent one lookup every1000 seconds leading to
about3.5 lookups per second. This low amount of lookups
was chosen to decrease the impact of the CPU workloads
of the PlanetLab nodes on the experiment. On one hand
the CPU workloads varied dynamically due to other simul-
taneous done experiments by other research groups. On the
other hand the workload was additionally increased by the
simulation of about10 virtual nodes on each physical node.

During the experiments the following data was mea-
sured:

• the latency for each lookup,

• the hop count on the succeeding path,

• the average number of sent machine-gun messages be-
fore receiving an acknowledgement in SOLD, and

• the number of virtual nodes that had to be shut down.

4.2 Results

Altogether 74895/73592 lookups were started for
Chord/SOLD. When a lookup lasted longer than60 seconds
it was considered as a failed lookup since we wanted to an-
alyze fast lookups.

SOLD turned out to be far more robust than Chord. In
Chord15576 failed lookups were encountered which is a
failed lookup rate of20.7971%. SOLD instead had only84
failed lookups which is a failed lookup rate of0, 1141%.
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Figure 3. CDFs of Chord and SOLD.

SOLD managed much lower lookup latencies than
Chord. Figure 3 shows the cumulative distribution func-
tion of the number of lookups distributed by the total time
the lookup took (CDF) of Chord, compared to the CDF of
SOLD. Its can be seen that the latencies of SOLD are lower
in all ranges. About75% of all lookups have a latency less
than0.5 ms in SOLD, in Chord it is only about40% which
is nearly a factor of two. Before1 about95% of SOLDs
lookups are completed,in contrast to only65% in Chord.
The average latency of Chord is1.2359 seconds, the av-
erage latency of SOLD is0.5363 ms excluding the failed
lookups for both protocols. This is a factor of more than two
in the average latencies. If the failed lookups are considered
by assuming a lookup time of60 seconds, the situation gets
much worse for Chord. Its average latency is then13.4873
seconds, SOLDs average latency remains in the same range
with 0.6392.

For the response messages, as we have expected for an
environment like PlanetLab, the direct way to the origina-



tor node has been the fastest way in most cases. Approx-
imately 2.4% of the response messages were not routed
on the direct way, but took one of the provided alternative
routes.1.3% were routed back on the fastest lookup path.
1.1% were routed on completely new routes. The average
lookup latency of these overlay-routed response messages
was0.6417 which is in the same range than the overall aver-
age latency. This advantage does probably not compensate
the overhead produced by this response message mecha-
nisms. However, the results may get better in other testbeds,
involving models of asymmetrical connections and more
unreliable access networks.

To evaluate the machine-gun mechanism in SOLD, every
node measured the number of sent machine-gun messages,
before receiving an acknowledgement (machine-gun mes-
sages within the RTT of an overlay link). It turned that the
average number of sent machine-gun messages was3.9955,
before being acknowledged.

4.3 Overhead of SOLD

To calculate the theoretical upper bound for the number
of messages per lookup sent by SOLD, that for the messages
sent by Chord is evaluated first. The number of hops from
the originator to the target is limited toO(log(n)) in Chord,
where n is the number of nodes in the ring. Chord sends one
message over each hop, which is then acknowledged (e.g.
implicitly with TCP). Additionally, the target node sends
a response to the originator, which also is acknowledged.
This leads to

2 ∗ O(log(n)) + 2

messages per lookup for Chord.
A single thread, created by SOLD, needsO(log(n))

hops to reach the target node, since it is routed via the
same way as it would be in Chord. Two threads might
in a worst case scenario (which is actually not possible)
bounce offO(log(n)) times from each other. The (physi-
cally) fastest one of the threads at a certain node (this may
change from hop to hop) takes the best overlay route, the
other one bounces off. Since both of the threads transport
the same lookup, and both threads finally reach the target
node, the threads can be mixed up. It is of no matter for this
evaluation, which one of the threads bounces off. Thus, it is
assumed for this analysis that thekth thread with1 ≤ k ≤ τ
bounces off allk − 1 previous threads. With these assump-
tions the first thread succeeds afterO(log(n)) hops. The
second thread bounces offO(log(n)) times and is free after
that to route to the target node over an usual Chord route,
leading to a worst case hop count of2 ∗ O(log(n)). Like-
wise thekth thread needs a maximum ofk ∗ O(log(n))
hops. An amount ofk threads, routed to the target node
and back to the originator, together need a maximum of
2 ∗ k∗(k+1)

2 ∗O(log(n)) hops. On every hop a maximum of

µ machine-gun messages are sent and every first message is
acknowledged. This leads to a number of

k ∗ (k + 1) ∗ O(log(n)) ∗ (µ + 1)

messages for SOLD, if all acknowledgements have arrived
too late. This means, that as a rough upper bound, SOLD
produces at most

k ∗ (k + 1) ∗ O(log(n)) ∗ (µ + 1)

2 ∗ O(log(n)) + 2

≤
k ∗ (k + 1) ∗ O(log(n)) ∗ (µ + 1)

2 ∗ O(log(n))

=
k ∗ (k + 1) ∗ (µ + 1)

2

times more messages than Chord.
To evaluate the traffic overhead in the PlanetLab caused

by SOLD in comparison to Chord, another experiment was
started. It lasted only2 hours, because a huge amount of
data had to be collected, and was done under the same con-
ditions as the other experiment. Every message that was
produced by a lookup on any hop was counted. The result
was, that an average Chord lookup caused13 messages and
an average SOLD lookup caused246 messages, which is an
overhead factor of18, 92. The theoretical upper bound for
this experiment withτ = 4 andµ = 9 would have been a
factor of

4 ∗ (4 + 1) ∗ (9 + 1)

2
= 100.

5 Related Work

One of the major goals of P2P research in the area of
DHTs today is performance optimization, needed by a va-
riety of potential real life DHT applications, like location
aware services for mobility, file sharing, instant messaging
and many others. Optimization research includes a decrease
of signalling traffic, routing delay optimization, topology
optimization or improving resilience to network dynamics
like failed nodes and connections, churn or congestions.

When looking at the performance optimization work
done by the P2P community, three different categories of
related work can be distinguished. The first category is con-
sidering more adequate metrics than just logical proximity
during the construction of the overlay topology. The second
category of related work aims at replicating the information
itself, to bring it closer to where it is most popular. Finally
the third category uses more than one route to improve the
DHT routing performance, and therefore is the closest to
SOLD.

Under the first category, Pastry [2] and Tapestry
[12]create more neighborhood-aware P2P structures. A
given node collects passively discovered close neighbors



and use them in a heuristic way as forwarding alternatives.
Proximity could be expressed in physical hop count, RTT,
or even geographic distance. As a further variation, Kadem-
lia [13] improves this principle by integrating the neighbor-
hood optimization into its finger table. In Coral [14], hierar-
chically ordered DHT clusters effectively reduce long dis-
tance lookups and data access using milestones. Whereas
in [15] the gathering of lookup latency provides some in-
formation to find fingers with low latency for every range
of the key space in a Chord ring. In a survey on combining
parts of further restructuring techniques, in [16], a combi-
nation different techniques shows some promising results.
This category can be seen as complementary to SOLD. Un-
like SOLD, these solutions modify the overlay structure
constructed by the DHT. SOLD, in contrast, applies an al-
gorithm on top of an existing DHT, which can both apply
to either simple DHT protocols (such as vanilla Chord) or
to more complex distance and delay-aware DHT topolo-
gies. The difference lies in the fact that SOLD is robust
to any kind of high frequency perturbations relating to de-
lay changes or to the stability of a given DHT route. Even
if given an ideal DHT route, SOLD tries to explore other
routes, which might in that moment experience less traffic
demand for instance. This assumption can be said about
links at the access network, where high frequency unpre-
dictable changes can occur due to restricted network capac-
ities.

The second category of work brings the information
closer to the node starting the lookup [17]. It mostly uses
cached replicates of DHT key-data pairs along the paths,
where the most lookups originate from. In other words, the
most popular keys are exactly replicated there, where they
are most needed. Similarly in [18], a more static replication
scheme hashes the same key by using multiple hash func-
tions. The lookup addresses simultaneously all hash identi-
fiers of a given key. Caching techniques are also explored
for a DHT-based Domain Name System in [19]. SOLD in
its current state does not deal with replicated content and
so does not need to cope with problems like replication in-
consistency. However, as SOLD is a lookup strategy it can
easily be enhanced to take advantage of the availability of
replicated keys in the DHTs but also be used for fast inter-
actions to increase the consistency of the replicas.

Under the third category, Epichord [20] and Kademlia
[13] use lookup replication closest to the scheme used in
SOLD, while adding to that some caching strategies. Un-
like the adaptive recursive approach of SOLD, where a
lookup progresses as a self-organizing structured flood, Epi-
chord requires the originator node to centrally manage the
progress of the flooded lookup by obtaining routing infor-
mation back, at each hop, in an iterative way. In Epichord,
after a horizontal replication each of the chosen better hops
must contact the originator node. This is repeated per each

hop, while in SOLD this is done at the start only. Further-
more, and in comparison with SOLD the number of overlay
hops in each lookup increases through this lengthy conver-
sational feedback to the originator. Additionally the whole
lookup process depends heavily on the the originators node
network connection and routing capability.

6 Conclusion

In this paper SOLD proposed a replication mechanism
aiming at providing QoS for DHT lookups, while using
the principle of self-organization to keep the complexity
low. SOLD adds new functions to an existing DHT with-
out changing its available functionality or topology.

The evaluation work carried on the PlanetLab shows that
the overlay routes can not be considered to provide a con-
stant level of QoS. The experienced quality of the overlay
routes varied in a bursty manner. SOLD deals with this sit-
uation by utilizing different overlay routes in the DHT in a
cooperative manner. The diversity of routes is exploited to
fire a message from one peer to another, rather than gather-
ing information to optimize routes.

The results of the experiments on the PlanetLab revealed
that SOLD is far more robust than Chord, with about99, 9%
of succeeding lookups for the former compared to79, 2%
with Chord. SOLD achieved an average latency more than
twice as good as vanilla Chord. About95% of SOLD’s
lookups had a latency of less than1 second and75% less
than0.5 seconds.

There are some issues with SOLD that have to be ad-
dressed in future work. SOLD has to be evaluated under
different conditions than the PlanetLab testbed, used for this
paper. The effects of the ”last mile” of the Internet’s topol-
ogy (i.e. the access networks) have to be evaluated, with its
firewalls, air interfaces and asymmetric links. Such envi-
ronments introduce problems to which SOLD should offer
promising solutions.
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