
Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Patrick Wuechner, Janos Sztrik and Hermann De Meer. Modeling wireless sensor networks using finite-source retrial queues with unreliable orbit. In Proc. of the Workshop on Performance
Evaluation of Computer and Communication Systems (PERFORM 2010), Volume 6821 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2011. The original publication is available at
www.springerlink.com.

See http://www.net.fim.uni-passau.de/papers/Wuechner2011a for full reference details (BibTeX, XML).

Modeling Wireless Sensor Networks
Using Finite-Source Retrial Queues

with Unreliable Orbit?

Patrick Wüchner1, János Sztrik2, and Hermann de Meer1

1 Faculty of Informatics and Mathematics,
University of Passau, Innstraße 43,

94032 Passau, Germany,
patrick.wuechner@uni-passau.de

2 Faculty of Informatics, University of Debrecen,
Egyetem tér 1. Po.Box 12, 4010 Debrecen, Hungary,

jsztrik@inf.unideb.hu

Abstract. Motivated by the need for performance models suitable for
modeling and evaluation of wireless sensor networks, we introduce a re-
trial queueing system with a finite number of homogeneous sources, un-
reliable servers, orbital search, and unreliable orbit. All random variables
involved in model construction are assumed to be independent and expo-
nentially distributed. Providing a generalized stochastic Petri net model
of the system, steady-state analysis of the underlying continuous-time
Markov chain is performed and steady-state performance measures are
computed by the help of the MOSEL-2 tool. The main novelty of this
investigation is the introduction of an unreliable orbit and its applica-
tion to wireless sensor networks. Numerical examples are derived to show
the influence of sleep/awake time ratio, message dropping, and message
blocking on the senor nodes’ performance.

Keywords: performance evaluation, unreliable finite-source retrial
queue, wireless sensor network, energy efficiency, self-organization

1 Introduction

Wireless sensor networks (WSNs, [1, 12]) are communication networks with harsh
resource constraints. They need lightweight, energy-efficient, and self-organizing
communication protocols.

In this paper, we propose a model that allows to discuss the trade-off between
the energy efficiency and performance of WSNs by showing the positive and

? This research is partially supported by the German-Hungarian Intergovernmental
Scientific Cooperation (HAS&DFG, 436 UNG 113/197/0-1), by the New Hungary
Development Plan (TÁMOP 4.2.1./B-09/1/KONV-2010-0007), by the AutoI project
(STREP, FP7 Call 1, ICT-2007-1-216404), by the ResumeNet project (STREP, FP7
Call 2, ICT-2007-2-224619), by the SOCIONICAL project (IP, FP7 Call 3, ICT-
2007-3-231288), and by the EuroNF Network of Excellence (FP7, IST 216366).

negative effects of message dropping and blocking for variable sleep/awake time
ratios. The model is based on retrial queueing systems [7] in which arriving jobs
that find all servers unavailable do not line up in a queue, but join a so-called
orbit. An orbit is a buffer from where the jobs retry to get service until they
are successfully served. In contrast to ordinary queueing systems, the server(s)
might be idle even if the buffer contains jobs.

Due to their broad practical applicability, e.g., in the field of communication
networks, and due to their non-triviality, retrial queues have been receiving wide
interest in the scientific community. The interested reader is referred to [7] for a
recent introduction and summary of main methods, results, and applications.

Here, we focus on finite-source retrial queues. The arrival process is then
non-Poisson and depends on the number of customers already staying at the
system (see [7, p. 32]). While several variants of finite-source retrial queues have
been studied in related work (e.g., in [2–4, 6, 17–19]), the authors are not aware
of any discussion of the orbit’s unreliability, not even in the infinite-source case.

Our main contribution is presenting and discussing a generalized model of
finite-source retrial queues with unreliable orbit that also takes unreliable servers
(cf. [5, 15, 3, 17]) and orbital search (cf. [8, 11, 13, 18, 19]) into account.

By the help of this model, we discuss the influence of the sleep/awake time ra-
tio, message dropping, and message blocking on the senor nodes’ mean response
time, serving probability, and blocking probability.

The paper is organized as follows. We introduce the investigated WSN sce-
nario in Sect. 2. In Sect. 3, we present the full model description in form of a
generalized stochastic Petri net (GSPN), discuss the underlying continuous-time
Markov chain (CTMC), and present the main performance measures. Numerical
results, conveniently derived using the MOSEL-2 tool, are presented and their
implications on WSN design are discussed in Sect. 4. We conclude by summa-
rizing the paper and giving directions for future work in Sect. 5.

2 Use Case: Wireless Sensor Network

An example WSN scenario is shown in Fig. 1. Immobile sensor nodes (circles)
are deployed in a two-dimensional (x, y) area. The nodes are labeled with their
distance to the sink measured by the number of communication hops. The sink
node (solid black circle) is located at coordinate (7, 5).1

Due to harsh resource constraints and the resulting limited transmission
range, each node i (located at (xi, yi)) is only able to communicate directly
with its immediate neighbors, i.e., with all nodes j where |xj − xi| ≤ 1 and
|yj − yi| ≤ 2. For example, the node located at (6, 4) is able to exchange mes-
sages directly with the nodes located at (6, 6), (5, 5), (5, 3), (6, 2), (7, 3), and also
with the sink. We further assume that each node is aware of its own distance to
the sink measured in the number of hops.

1 The presented concepts also hold, mutatis mutandis, for mobile sensor nodes. The
nodes’ labels then need to be updated regularly. In this paper, however, we limit
ourselves to immobile nodes for the sake of conciseness.

2

3

2

2

3

1

1

2

1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

Incident 0

5

5

5

5

4

4

4

4

3

3

3

3

6

6

6

6

6

4

Incident 1

Incident 2

Legend

Incident-affected area

Sink node

Sensor node (n = #hops to sink)

Incident-recording nodes:

- Incident 0

- Incident 0 & 1

- Incident 1

- Incident 1 & 2

- Incident 2

Communication of incidents:

- Incident 0

- Incident 1

- Incident 2

2

1

n

n

n

n

n

n

x-coordinate

y-coordinate

Fig. 1. WSN example scenario.

The purpose of the given sensor network is to monitor the covered area, record
incidents, and communicate the appearance of incidents to the sink in a multi-
hop fashion. In a real system, such incidents could be, e.g., the recognition of
an intrusion, temperatures or humidity exceeding or under-running predefined
thresholds, or the detection of fire, gas, vibration, movement, noise, etc. We
assume that each node may be equipped with several sensors. Hence, each node
may detect several but a finite number of distinct incidents.

In the example scenario sketched in Fig. 1, three incidents (Incidents 0, 1,
and 2) can be detected by the sensor network. For example, node (2, 6) detects
Incidents 0 and 1, immediately generates a message for each incident, and tries
to send both messages toward the sink. Node (2, 6) has six neighbors of which
two are closer to the sink: node (3, 7) and node (3, 5).

In principle, all neighbors can be aware of the transmission due to the broad-
cast character of the wireless air interface. Hence, each neighbor may serve as
next-hop node. However, nodes are self-organizing and, for saving energy, may
decline to receive new messages, store messages, or (re-)send messages depending
on the node’s energy status, the sender’s distance to the sink, etc.

By sending an acknowledgment, a receiver agrees to accept the message and
to take care of forwarding it further. If none of the neighbors accepts the message,
node (2, 6) stores it locally and retries to forward it later. If in the meanwhile
node (2, 6) receives further messages reporting the same incident, it merges the
messages. Hence, each incident is only stored once at the node.

As soon as the message has successfully been transferred to the next hop,
the latter takes care of forwarding the message toward the sink. Messages that
reach the sink leave the sensor network.

So R Sbu F

O

SbdSiu Sid

Ou

t1

t12

t13

t2

t5

t11

t10

t6

t7 t4

t8 t9

t14

t15

t3

t16

Od

Sources

Servers

Orbit

Fig. 2. GSPN of finite-source retrial queue with unreliable servers, unreliable orbit,
and orbital search.

3 Model and Performance Measures

As a first step toward assessing the influence of system parameters on the per-
formance and energy efficiency of the WSN scenario introduced in Sect. 2, we
focus on a single node and its neighbors in this paper.

In this section, we present a model representing such a group of nodes. After
constructing the model in the form of a GSPN (cf. [10, p. 64]) and discussing
the underlying CTMC (cf. [10, p. 96]), performance measures are derived based
on the model’s steady-state probabilities.

3.1 Generalized Stochastic Petri Net Model

In Figure 2, the model is graphically represented in form of a GSPN.The model is
a generalization of finite-source retrial queues with unreliable servers (cf. [3, 17])
and finite-source retrial queues with orbital search (cf. [18, 19]) by introducing
an unreliable orbit, server hopping, and a variable number of server repairmen.

The main model parameters, the places’ descriptions, and the transitions’
functions are summarized in Tabs. 1, 2, and 3, respectively. Tab. 4 maps the use
case’s parameters to the model parameters and defines default values used as a
basis for numerical evaluations in Sect. 4.

Note that not all model properties can be mapped to the graphical GSPN
representation conveniently. For example, the dashed inhibitor arcs are subject

Table 1. Main model parameters.

Parameter Symbol Range
Number of sources K N
Number of servers S N

Number of repairmen SR N
Arrival rate λ R+

Service rate µ R+

Retrial rate ν R+

Search probability p (0, 1)

Busy server breakdown rate δSb R+

Busy server repair rate τSb R+

Idle server breakdown rate δSi R+

Idle server repair rate τSi R+

Orbit breakdown rate δO R+

Orbit repair rate τO R+

Sources blocked (servers down)2 β 0, 1
Sources blocked (orbit down)2 γ 0, 1

Server hopping2 σ 0, 1
Server flushing2 φ 0, 1
Orbit flushing2 ω 0, 1

Table 2. Places used in Fig. 2 with
capacity (column “Cap.”) and ini-
tial marking (column “i.M.”).

ID Description Cap. i.M.
So Active sources K K
R Incoming requests 1 0
Sbu Servers, busy & up S 0
Siu Servers, idle & up S S
Sbd Servers, busy & down S 0
Sid Servers, idle & down S 0
O Orbit K 0
Ou Orbit up 1 1
Od Orbit down 1 0
F Finished requests 1 0

to additional guard functions. Please refer to Tab. 3 (IF statements in column
Value) for a comprehensive list of all guard functions that have to be considered.

The model consists of three main parts (gray boxes in Fig. 2): a finite set of
sources, a finite set of servers, and the orbit component.

In our finite-source model, there are K sources represented by K Petri net
tokens initially residing in place So. All tokens located in place So represent
incidents that are currently not sensed by, reported to, or accepted by the node
under investigation. New incidents arrive to the node with arrival rate λ per
unreported incident (transition t1). Remember that incoming reports of incidents
that are already currently processed by the node do not imply new tasks which
motivates the application of a finite-source model.

Arriving tokens enter place R from where they immediately try to enter
the group of S servers. The node immediately tries to forward new messages
(represented by tokens in place R) to one of the next hops, represented by the
group of S servers. Each server might be idle and up (tokens in place Siu),
busy and up (Sbu), idle and down (Sid), or busy and down (Sbd). Busy servers
represent next-hop nodes that are currently not able to receive incident messages
since they are processing former messages (t3) with rate µ. A server is considered
down when the corresponding next-hop node is sleeping, i.e., in power-saving
mode. Only servers that are up and idle are ready to receive tokens. If none of
the servers (next hops) is idle and up (awake), arriving tokens (incident messages)
move to the orbit O (investigated node’s local storage of messages) via t5.

2 The parameter value 0 refers to false/off/disabled, the parameter value 1 refers to
true/on/enabled.

3 Type of transition: I: immediate transition ⇒ column Value denotes priority (PRIO)
or weight (WEIGHT); E: timed transition ⇒ column Value denotes firing rate.

4 Unless otherwise stated, these values are used as a basis for numerical results pre-
sented in Sect. 4.

Table 3. Transitions used in Fig. 2.

ID Type3 Description Value
t1 E Request generation IF (β = 0 OR (Sid + Sbd < S)) AND

(γ = 0 OR Ou = 1): λSo
t2 I Incoming request to server PRIO 1
t3 E Service µSbu

t4 I Served and no orbital search WEIGHT 1− p
t5 I Incoming request to orbit PRIO 0
t6 E Retrial IF Ou = 1: νO
t7 I Served and orbital search IF Ou = 1: WEIGHT p
t8 E Busy server breakdown δSbSbu

t9 E Busy server repair τSb min(Sbd, SR)
t10 I Server hopping on failure IF σ: PRIO 1
t11 I Server flushing on failure IF φ: PRIO 0
t12 E Idle server breakdown δSiSiu

t13 E Idle server repair τSi min(Sbi,max(0, SR−Sbd))
t14 E Orbit breakdown δO
t15 E Orbit repair τO
t16 I Orbit flushing on failure IF ω AND Ou = 0

Table 4. Default parameters based on use case.

Parameter Symbol Default4

Number of incident types (sources) K 10

Mean inter-arrival time per unreported incident (1/arrival rate) λ−1 1 min

Mean retrial time per stored incident message (1/retrial rate) ν−1 5 ms
Number of potential next hops (servers) S 5

Mean processing time at next hop (1/service rate) µ−1 20 ms
Probability that node is aware of next hop’s service completion (orbital search) p 0.1
Ratio of sleep/awake time α 10

All nodes’ mean awake time (1/failure rate) δ−1 50 ms

All nodes’ mean sleeping time (1/repair rate) τ−1 αδ−1

Message transfer from sleeping to operational next hop (server hopping) σ 0 (off)
Drop message on falling asleep (server/orbit flushing) φ, ω 0 (off)
Block incoming messages if next hops are down or re-forwarding is disabled
(source blocking on server/orbit failure)

β, γ 0 (off)

Idle servers fail (t12), i.e., idle next hops fall asleep, with rate δSi. Each failed
idle server gets repaired (t13), i.e., idle next hop wakes up, with a rate of τSi
(if SR ≥ S). Similarly, busy servers fail (t8) with rate δSb and get repaired (t9)
with τSb each (if SR ≥ S). If δSi = δSb > 0, we call the breakdowns independent,
and if δSi = 0 < δSb, we call them active (cf. [17]). In the following, we assume
that all breakdowns and repairs are independent with rates δ := δSi = δSb and
τ := τSi = τSb, respectively. We call δ−1 and τ−1 the next hops’ mean awake
and sleeping time, respectively.

For keeping the model general and being able to compare the model to related
work, we also allow the number of server repairmen SR to be smaller than
the number of servers. If 0 < SR < S, failed busy servers are repaired with a
higher priority than idle servers. Hence, SR is the maximum number of repairmen
available for failed busy servers and max(0, SR−Sbu) is the remaining maximum
number of repairmen available for failed idle servers (see column Value in Tab. 3
for t9 and t13). In the following, we assume that SR = S.

The model allows server hopping (t10) and flushing (t11) on server failure
if the parameters σ and φ are set to true (i.e., 1), respectively. Server hopping

enables tokens to be directly transferred from a failing server to any operational
idle server. If server flushing is active, tokens are moved from a failing server
to the orbit. If both options are enabled, server hopping has higher priority.
Workload at failing servers is resumed after repair if both options are disabled.
In the following, we assume that hopping is always disabled (σ = 0) and server
flushing is referred to as next-hop dropping since incident messages are dropped
from failing next hops if φ = 1.

Tokens located in the orbit (O) represent incident messages stored in the
node under investigation for retransmission. Each token located in the orbit (O)
is retrying (t6) to enter the group of servers after an exponentially distributed
retrial time with mean 1/ν.

Representing the node’s potential to refrain from storing incoming messages
and from sending stored messages for power-saving reasons, the orbit is subject
to failure (t14) with rate δO. A failed orbit gets repaired (t15) with rate τO.
Depending on parameter ω, the failing orbit may discard all stored tokens (node
dropping, ω = 1) via t16 or keep them for later resumption. In the following, we
assume δO = δ and τO = τ .

Via parameters β and γ, blocked sources (cf., [17]) can be modeled (see guard
function of t1). In the blocked case, sources do not generate new calls if all servers
(β = 1) and/or the orbit (γ = 1) is down. In the unblocked case (β = γ = 0),
sources are aware neither of server nor orbit failures. Blocked sources represent
the node’s ability to decline incoming messages since no next hop is available
(next-hop blocking, β=1) or since the node itself is in power-saving mode (node
blocking, γ = 1). Here, power-saving of the investigated node refers to the case
when it still might forward messages to next hops but refrains from storing and
re-sending new incident messages that cannot be sent immediately.

With probability p, a busy server on service completion (token at place F)
informs the (operational) orbit of its upcoming idleness and, if available, directly
receives (t7) the next token from the orbit (orbital search). With a probability
of 1 − p, orbital search is not performed (t4). For p ≈ 1, the performance of
a reliable retrial queue resembles the performance of a classical first-come-first-
served queue. In the following, we assume that the investigated node gets aware
of a next hop’s idleness with a probability of 10%, i.e., p = 0.1.

3.2 Underlying Markov Chain

The described GSPN can be mapped to the five-dimensional stochastic process
X(t) = (Sbu(t), Sbd(t), Siu(t), O(t), Ou(t)) , where 0≤ Sbu(t)≤min(S,K), 0≤
Sbd(t)≤min(S,K), 0≤Siu(t)≤S, 0≤O(t)≤K, and Ou(t)∈{0, 1} are the number
of tokens in places Sbu, Sbd, Siu, O, and Ou, respectively, at time t ≥ 0. Note
that Sid(t)=S−(Sbu(t)+Sbd(t)+Siu(t)) , So(t)=K−(O(t)+Sbu(t)+Sbd(t)) , and
Od(t)=1−Ou(t) . Places R and F do not have to be considered because all states
where R(t) > 0 or F (t) > 0 are vanishing due to enabled immediate transitions.

Since all involved random variables are exponentially distributed, X(t) con-
stitutes a CTMC. We denote the state space of X(t) with X. Since X is both
finite and irreducible, the CTMC is ergodic for all positive values of the arrival

rate λ. From now on, the system is assumed to be in steady state, i.e., t → ∞.
Due to space limitations and the high complexity of the underlying CTMC, we
refrain from visualizing it here. We also refrain from giving equations for the size
of X based on K and S which is a tedious combinatorial problem. Note that for
a less complex model, this was achieved in [19].

3.3 Main Performance Measures

The stationary probabilities of the CTMC discussed in Sect. 3.2 are

P (sbu, sbd, siu, o, ou)

= lim
t→∞

P (Sbu(t) = sbu, Sbd(t) = sbd, Siu(t) = siu, O(t) = o,Ou(t) = ou) .

The stationary probabilities can conveniently be derived using the software tool
MOSEL-2 (see Sect. 4). Knowing the stationary probabilities, the main perfor-
mance measures of the finite-source retrial queue can be obtained as follows:

– Mean number of tokens at operational servers Sbu:

Sbu =
∑

∀(sbu,sbd,siu,o,ou)∈X

sbuP (sbu, sbd, siu, o, ou) .

– Mean number of tokens at failed servers Sbd:

Sbd =
∑

∀(sbu,sbd,siu,o,ou)∈X

sbdP (sbu, sbd, siu, o, ou) .

– Mean number of tokens at the orbit O:

O =
∑

∀(sbu,sbd,siu,o,ou)∈X

oP (sbu, sbd, siu, o, ou) .

– Probability that all servers are down PSd
:

PSd
=

∑
∀(0,sbd,0,o,ou)∈X

P (0, sbd, 0, o, ou) .

– Probability that orbit is down POd
:

POd
=

∑
∀(sbu,sbd,siu,o,0)∈X

P (sbu, sbd, siu, o, 0) .

– Mean number of blocked active sources Sob:

Sob =
∑

∀(0,sbd,0,o,ou)∈X | β=1;

∀(sbu,sbd,siu,o,0)∈X | γ=1;

(K − (sbu + sbd))P (sbu, sbd, siu, o, ou) .

– Utilization of servers: ρ = Sbu

S .

– Mean number of busy servers: Sb = Sbu + Sbd .

– Mean number of tokens flushed on orbit failure: Of = ωO .

– Mean number of tokens at service or orbit: M = Sb +O .

– Mean number of active sources: So = K −M .

– Probability that a specific source is blocked: Pb = Sob
So

.

– Mean number of unblocked active sources: Soa = So− Sob .
– Overall arrival rate: λin = λSoa .

– Departure rate of served tokens: λs = µSbu .

– Departure rate of unserved tokens: λu = λin − λs .
– Probability of an incoming token getting served: Ps = λs

λin
.

– Mean waiting time: W = O
λin

.

– Mean response time: T = M
λin

.

4 Numerical Results

Instead of deriving the underlying CTMC and solving the system of global bal-
ance equations manually, we directly formulate the GSPN shown in Fig. 2 using
the Modeling, Specification and Evaluation Language (MOSEL-2). MOSEL-2’s
evaluation environment then derives the performance measures by automatic
generation and numerical evaluation of the underlying CTMC. Due to space
limitations, we refer the interested reader to [9, 16] for details on MOSEL-2.
The corresponding MOSEL-2 model is available on request. The scalability of
MOSEL-2 in the context of finite-source retrial queues is discussed in [18].

The validity of the proposed model can be shown by comparing its results
in the case of a reliable orbit to numerical results obtained in [3] and [17] (both
partly based on the Pascal program provided in [14, p. 272–274]), and [18]. For all
comparable parameter settings, our results perfectly match the reference results.

Unless stated otherwise, the model parameters are chosen according to Tab. 4
in the following.

On the x-axis of all result graphs, the parameter α (sleep/awake ratio) is

given. As already indicated in Tab. 4, α = δ
τ = τ−1

δ−1 , where τ−1 := τ−1
O = τ−1

Sb =

τ−1
Si is the mean time the nodes are in power-saving mode, and δ−1 := δ−1

O =
δ−1
Sb = δ−1

Si is the mean time the nodes (investigated node and its idle or busy
next hops) are awake. Hence, α is the proportion of time the investigated nodes
are in power-saving mode. The higher α, the longer nodes sleep in comparison
to the time they are awake and the less energy they use in the course of time.5

On the y-axis of the presented result graphs, we focus on the mean response
time T , source blocking probability Pb, and probability of getting served Ps.

5 Note that in this paper we do not yet consider energy used by the process of switching
between awake and sleep states.

4.1 Influence of Sleep/Awake Ratio and Mean Awake Time

Fig. 3 shows the effect of modifying the sleep/awake ratio α (x-axis) and the
mean awake time δ−1 (curves) on the mean response time T (y-axis).

Increasing the energy efficiency (sleep/awake ratio) clearly results in a higher
mean response time. Increasing the mean awake time while keeping the mean
sleep/awake ratio constant also increases the mean response time, because the
sleeping time is a multiple of the awake time. Unfortunately, decreasing the
mean awake time is not arbitrarily possible, since switching state often comes
with additional overhead not (yet) handled by the model.

An important result is that accepting higher response times, i.e., increased
delay tolerance, considerably eases the design of energy-efficient WSNs.

For sleep/awake ratio α ≈ 0, the probability that a node sleeps is very small.
For all values of the mean awake time δ−1, the mean response time T is then
close to the processing time µ−1 ≈ 20ms of the next hop. Since the inter-
arrival time λ−1 = 1min is very large in comparison to the processing time,
the probability that at arrival of a new incident all next hops are busy is close
to zero. Consequently, the probability for having to wait (and to retry) is also
close to zero which results in a negligible waiting time.

In the following, we set the mean awake time to δ−1 = 50ms and discuss
whether the mean response time can be decreased by dropping messaged from
sleeping nodes.

4.2 Influence of Sleep/Awake Ratio and Message Dropping

Fig. 4 shows of the effect of the sleep/awake ratio α (x-axis) and incident message
dropping by sleeping nodes φ = ω (curves) on the mean response time T (y-axis,
top) and on the serving probability Ps (y-axis, bottom).

It can be seen at the top of Fig. 4 that dropping stored incident messages
from sleeping nodes significantly decreases the mean response time, even below
the reliable case. This is because messages that are dropped may spend less time
in the system than messages that are successfully served.

Therefore, we also need to have a look at the probability Ps that an accepted
incident message can be successfully processed. This is shown at the bottom of
Fig. 4. Dropping stored messages clearly implies smaller serving probabilities.
Therefore, dropping should be used for outdated messages only. However, the
age of tokens cannot be considered by the presented model.

Note that even for α ≈ 0, i.e., the probability of the nodes being awake
is close to 1, the serving probability is not necessarily close to 1. The serving
probability also highly depends on the absolute value of the awake time since
after each awake time, stored incident messages are dropped (regardless how
short the sleep time is afterwards).

In Sect. 4.3, we aim at increasing the serving probability by blocking incoming
messages when nodes are sleeping.

Fig. 3. Effect of sleep/awake ratio α (x-
axis) and mean awake time δ−1 (curves)
on mean response time T (y-axis).

Fig. 4. Effect of sleep/awake ratio α (x-
axis) and message dropping φ = ω
(curves) on mean response time T (y-axis,
top) and on serving probability Ps (y-axis,
bottom).

4.3 Influence of Sleep/Awake Ratio and Message Blocking

Fig. 5 shows the effects of the sleep/awake ratio α (x-axis) and of the message
blocking β = γ (curves) on the mean response time T (y-axis, top), the serving
probability Ps (y-axis, middle), and the blocking probability Pb (y-axis, bottom).

First, we discuss the serving probability shown in the middle of Fig. 5.
Blocking incoming messages has a positive effect on the serving probability. For
sleep/awake ratio α > 3, the effect of next-hop blocking () has significantly
more effect than node blocking ().

In comparison to the non-blocking case (), the following improvements
can be observed:

– Some improvement (): Node blocking prevents arriving messages from
being dropped immediately when the node is in power-saving mode and
immediate forwarding is not possible due to busy or sleeping next hops at
the same time.

– Good improvement (): If next-hop blocking is enabled, messages do not
join the node when no next hop is accepting messages. This reduction of
the number of messages stored at the node increases the serving probability,
since all stored messages are dropped later with a high probability.

– Best improvement (): The combination of both blocking mechanism re-
sults in the best improvement of the serving probability.

Fig. 5. Effect of sleep/awake ratio α (x-axis) and message blocking β & γ (curves)
on mean response time T (y-axis, top), serving probability Ps (y-axis, middle), and
blocking probability Pb (y-axis, bottom).

Focusing on the two best cases with respect to the serving probability (next-
hop blocking is enabled, curves and), we now discuss which is the
better alternative regarding the mean response time given at the top of Fig. 5.

Curve refers to the case when node blocking is disabled. As seen be-
fore, the serving probability drops significantly when the sleep/awake ratio is
increased, because it is more likely that a message needs to wait in the node and
hence may be dropped if storage gets disabled before an operational and free
next hop is found. Since dropped messages tend to stay less time in the system
than served messages, the mean response time decreases.

In the scenario of curve , the probability that an incoming message gets
immediately dropped is higher than in the scenario of curve , where this
situation is not possible due to node blocking.

Curve follows the same behavior as for small sleep/awake ratios
(α < 0.5) but is then dominated by another effect that can be explained as
follows. Messages are only accepted when they can at least be stored locally.
Hence, if they cannot be forwarded immediately on arrival, they will (in contrast
to scenario) always experience waiting time. Additionally, since the next-
hop nodes follow the same sleep/awake ratio as the investigated node, stored
messages have to wait longer before being successfully transferred to an available
next hop with increasing sleep/awake ratio.

Hence, while is more attractive than with respect to the serving
probability, it is less attractive regarding the mean response time. Moreover, it
can be seen at the bottom of Fig. 5 that has a significantly lower probability
of blocking incoming incident messages than .

We can therefore conclude that next-hop blocking is more attractive than
node blocking. It should be noted, however, that next-hop blocking is relying on
local knowledge about the next hops’ state. How this knowledge can be obtained
in a self-organized manner and which overhead might come with this is not yet
covered by this paper.

5 Conclusions

A generalization of finite-source retrial queueing systems is studied. In addition
to unreliable servers, the model can be used to evaluate the effects of an unreli-
able orbit. The model is used to discuss the trade-off between energy efficiency
and performance in a wireless sensor network use case. The model evaluation is
carried out using the MOSEL-2 tool. The numerical results are discussed in de-
tail and show the positive and negative effects of message dropping and message
blocking.

Our future work aims at finding self-organized mechanisms to provide the
sensor nodes with the necessary local knowledge. We also need to discuss in more
detail how single-node results can be aggregated suitably to evaluate multiple-
hop scenarios and larger network topologies. Validation of model results by com-
parison with test-bed results is considered. Finally, the presented model should
assist in developing energy-efficient and self-organizing lightweight communica-
tion protocols for wireless sensor networks.

References

1. I. F. Akyildiz and M. C. Vuran. Wireless Sensor Networks. John Wiley & Sons,
July 2010.

2. B. Almasi, G. Bolch, and J. Sztrik. Heterogeneous finite-source retrial queues.
Journal of Mathematical Sciences, 121(5):2590–2596, June 2004.

3. B. Almasi, J. Roszik, and J. Sztrik. Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs. Mathematical and Computer Modelling,
42:673–682, 2005.

4. J. Amador. On the distribution of the successful and blocked events in retrial
queues with finite number of sources. In Proc. of the 5th Int’l Conf. on Queueing
Theory and Network Applications, pages 15–22, 2010.

5. J. R. Artalejo. New results in retrial queueing systems with breakdown of the
servers. Statistica Neerlandica, 48:23–36, 1994.

6. J. R. Artalejo. Retrial queues with a finite number of sources. J. Korean Math.
Soc., 35:503–525, 1998.

7. J. R. Artalejo and A. Gómez-Corral. Retrial Queueing Systems: A Computational
Approach. Springer Verlag, 2008.

8. J. R. Artalejo, V. C. Joshua, and A. Krishnamoorthy. An M/G/1 retrial queue
with orbital search by the server. In J. R. Artalejo and A. Krishnamoorthy, ed-
itors, Advances in Stochastic Modelling, pages 41–54. Notable Publications Inc.,
NJ, 2002.

9. K. Begain, G. Bolch, and H. Herold. Practical Performance Modeling – Application
of the MOSEL Language. Kluwer Academic Publishers, 2001.

10. G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks and Markov
Chains. John Wiley & Sons, New York, 2nd edition, 2006.

11. S. R. Chakravarthy, A. Krishnamoorthy, and V. Joshua. Analysis of a multi-server
retrial queue with search of customers from the orbit. Performance Evaluation,
63(8):776–798, 2006.

12. F. Dressler. Self-Organization in Sensor and Actor Networks. John Wiley & Sons,
2007.

13. A. N. Dudin, A. Krishnamoorthy, V. Joshua, and G. V. Tsarenkov. Analysis of
the BMAP/G/1 retrial system with search of customers from the orbit. Eur. J.
Operational Research, 157(1):169–179, 2004.

14. G. Falin and J. Templeton. Retrial Queues. Chapman & Hall, 1997.
15. J. Wang, J. Cao, and Q. Li. Reliability analysis of the retrial queue with server

breakdowns and repairs. Queueing Systems, 38:363–380, 2001.
16. P. Wüchner, H. de Meer, J. Barner, and G. Bolch. A brief introduction to MOSEL-

2. In R. German and A. Heindl, editors, Proc. of 13th GI/ITG Conference on
Measurement, Modelling and Evaluation of Computer and Communication Systems
(MMB 2006). GI/ITG/MMB, University of Erlangen, VDE Verlag, 2006.

17. P. Wüchner, H. de Meer, G. Bolch, J. Roszik, and J. Sztrik. Modeling finite-source
retrial queueing systems with unreliable heterogeneous servers and different service
policies using MOSEL. In K. Al-Begain, A. Heindl, and M. Telek, editors, ASMTA
2007 Conference, pages 75–80, Prague, Czech Republic, June 2007.

18. P. Wüchner, J. Sztrik, and H. de Meer. Homogeneous finite-source retrial queues
with search of customers from the orbit. In Proc. of 14th GI/ITG Conference on
Measurement, Modelling and Evaluation of Computer and Communication Systems
(MMB 2008), Dortmund, Germany, March 2008.

19. P. Wüchner, J. Sztrik, and H. de Meer. Finite-source M/M/S retrial queue with
search for balking and impatient customers from the orbit. Computer Networks,
53(8):1264–1273, June 2009.

