Modeling Finite-Source Retrial Queueing Systems with Unreliable Heterogeneous Servers and Different Service Policies using MOSEL*

G. Bolch†, J. Roszik‡, J. Sztrik‡, P. Wuechner††
† University of Erlangen, Germany
‡ University of Debrecen, Hungary
†† University of Passau, Germany
jsztrik@inf.unideb.hu

Abstract

This paper deals with the performance analysis of multiple server retrial queueing systems with a finite number of homogeneous sources of calls, where the heterogeneous servers are subject to random breakdowns and repairs. The requests are serviced according to Random Selection and Fastest Free Server disciplines.

The novelty of this investigation is the introduction of different service rates and different service policies together with the unreliability of the servers, which has essential influence on the performance of the system, and thus it plays an important role in practical modeling of computer and communication systems. All random variables involved in the model construction are assumed to be exponentially distributed and independent of each other.

The main steady-state performability measures are derived, and several numerical calculations are carried out by the help of the MOSEL tool (Modeling, Specification and Evaluation Language) under different service disciplines. The numerical results are graphically displayed to illustrate the effect of failure rates on the mean response time and on the overall system’s utilization.

Keywords: retrial queueing systems, finite number of sources, multiple server queues, heterogeneous servers, ordered service, random service, unreliable server, performance tool, performance and reliability measures

1 Introduction

Retrial queueing systems (also known as queueing systems with repeated attempts or with returning customers) are characterized by the following feature: a primary request finding all servers busy on arrival does not wait in a queue, but leaves the service area and after some random time repeats its demand. For the most important results on this type of queues see, for

*Research is partially supported by German-Hungarian Intergovernmental Scientific Cooperation, HAS-DFG, 2005.
example [1], [2], [3], and [4]. This feature plays a special role in many computer and communication systems having a significant negative impact on the performance characteristics of the system. For some examples in the field of computer systems and communication networks see [5], [6], and [7].

In general, the components of practical computer systems are subject to random breakdowns. This has a heavy influence on the performance measures just as the retrial phenomenon. Thus, if we model computer systems containing unreliable components it is important to take it into account in the model construction. Of course, the breakdown of the servers has the most significant negative impact on the performance of the most frequently used client-server architecture. For modeling of this type of systems, both infinite and finite-source retrial queues with server breakdowns were applied (see, for example, [8], [9], [10], and [11]). Queueing systems with heterogeneous servers are still an interesting topic. For recent results confer, for example [12], [13]. However, for retrial queueing systems with heterogeneous servers we have found only [14]. To the best knowledge of the authors there is no paper on finite-source retrial queues with heterogeneous servers, not even in reliable case.

In this paper, we analyze the finite-source retrial queue with unreliable heterogeneous (asymmetric) servers, that is, the servers have different parameters in service, failure and repair rates. In the present study, the most important heterogeneous characteristic is the service rate, since we compare two service policies, namely Random Service (RS) and Fastest Free Server (FFS). In the case of RS discipline, the requests are assigned to the idle servers randomly, and in the FFS case, the requests are assigned to the fastest available free server.

The purpose of this paper is to generalize the models of [4] and [11]. The novelty of this investigation is the introduction of different service rates and different service policies together with the unreliability of the servers.

The main steady-state performability measures are derived, and several numerical calculations are carried out by the help of the MOSEL tool [15] under different service disciplines. The numerical results are graphically displayed to illustrate the effect of failure rates on the mean response time and on the overall system’s utilization.

The organization of the paper is as follows. In the next section we give the mathematical model description and derive the performance measures. Then, we use the efficient software tool MOSEL to formulate the model and to obtain the performance measures. In Section 3, we present some numerical examples for the models under different service disciplines. The results are graphically displayed using the IGL (Intermediate Graphical Language) interpreter which belongs to MOSEL. By the help of these figures we illustrate the effect of failure rates on the mean response time and on the overall system’s utilization. Section 4 is devoted to some conclusions.

2 The $M/\bar{M}/c//K$ retrial queueing model with unreliable servers and different service policies

Consider a finite-source retrial queueing system with c servers, where the primary calls are generated by K, $c \leq K < \infty$, sources (see Fig. 1). Each server can be in operational (up) or non-operational (failed) states, and if it is up it can be idle or busy. Each source can be in three states: generating a primary call (free), sending repeated calls (retry), and under service (in-service) by one of the servers. If a source is free at time t, it can generate a
primary call during the interval \((t, t + dt)\) with probability \(\lambda dt + o(dt)\). If one of the servers is up and idle at the moment of the arrival of the call then the service of the call starts. In the case of Random Service (RS) discipline, the requests are assigned to the available free servers randomly, but in the Fastest Free Server (FFS) case the availability and idleness of the servers are always examined according to the highest service rates. The service is finished during the interval \((t, t + dt)\) with probability \(\mu_k dt + o(dt)\) if the \(k\)th server is available.

Server \(k\) can fail during the interval \((t, t + dt)\) with probability \(\delta_k dt + o(dt)\) if it is idle, and with probability \(\gamma_k dt + o(dt)\) if it is busy. If the server fails in busy state, the interrupted request returns to the orbit and, thus, the respective source will retry to get service. If \(\delta_k = 0\) and \(\gamma_k > 0\), or \(\delta_k = \gamma_k > 0\), active or independent breakdowns can be discussed, respectively. The repairman follows FIFO discipline to fix up the server breakdowns, the repair time of the \(k\)th server is exponentially distributed with a finite mean \(1/\tau_k\). If all the servers are failed two different cases can be treated: In the blocked sources case, all the operations are stopped except from the repair of the servers. On the other hand, in the unblocked (intelligent) sources case, only service is interrupted but all the other operations are continued. If all the servers are busy or failed at the moment of the arrival of a call the source starts generating a Poisson flow of retrial calls with rate \(\nu\) until it finds an available free server. After service, the source can generate a new primary call, and the server becomes idle so it can serve a new call. All the times involved in the model construction are assumed to be mutually independent of each other.

The state of the system at time \(t\) can be described by the process

\[X(t) = (\alpha_1(t), \ldots, \alpha_c(t); N(t)), \]

where \(N(t) \leq K\) is the number of retrying sources at time \(t\), and \(\alpha_k(t), k=1, \ldots, c\), denotes the state of the \(k\)th server at time \(t\). If there is a customer under service at the \(k\)th server, we
define $\alpha_k(t) = 1$, if it is operational and idle then $\alpha_k(t) = 0$, otherwise the server is failed and $\alpha_k(t) = -1$.

Because of the exponentiality of the involved random variables and the finite number of sources this process is a Markov chain with a finite state space. Since the state space of the process $(X(t), t \geq 0)$ is finite, the process is ergodic for all reasonable values of the rates involved in the model construction. From now on, we assume that the system is in the steady-state. Because of the fact that the state space of the describing Markov chain is very large, it is difficult to calculate the system measures in the traditional way of solving the system of steady-state global balance equations. To simplify this procedure we used the software tool MOSEL.

Let us define the stationary probabilities by:

$$P(s_1, \ldots, s_c, j) = \lim_{t \to \infty} P\{\alpha_1(t) = s_1, \ldots, \alpha_c(t) = s_c, N(t) = j\},$$

where $s_1, \ldots, s_c = -1, 0, 1$, $j = 0, \ldots, K^*$, and K^* is the number of sources in service and given by:

$$K^* = K - \sum_{s_k, s_k = 1} s_k.$$

Furthermore, let us denote by $N(\infty)$ the number of retrying sources, $C(\infty)$ the number of busy servers, $A(\infty)$ the number of available servers at steady-state, and denote by $p_{kj} = P\{C(\infty) = k, N(\infty) = j\}$ the joint steady-state distribution of the number of busy servers and the number of retrying sources.

Once we have obtained the above defined probabilities the main steady-state system performance measures can be derived as follows:

- **Mean number of retrying sources (calls staying in the orbit)**

 $$N = E[N(\infty)] = \sum_{k=0}^c \sum_{j=1}^K j p_{kj} = \sum_{s_1, \ldots, s_c, j=1}^{K^*} j P(s_1, \ldots, s_c, j).$$

- **Utilization of the kth server**

 $$U_k = \sum_{s_1, \ldots, s_c, s_k = 1}^{K^*} \sum_{j=0}^0 P(s_1, \ldots, s_c, j), \quad k = 1, \ldots, c.$$

- **Mean number of busy servers**

 $$C = E[C(\infty)] = \sum_{k=1}^c U_k.$$

- **Mean number of calls staying in the orbit or in service**

 $$M = E[N(\infty) + C(\infty)] = N + C.$$
• **Utilization of the repairman**

\[U_R = \sum_{s_1, \ldots, s_c} \sum_{j=0}^{K^*} P(s_1, \ldots, s_c, j). \]

• **Utilization of the sources**

\[U_S = \begin{cases}
\frac{E[K - C(\infty) - N(\infty); A(\infty) > 0]}{K} & \text{for blocked case,} \\
\frac{E[K - C(\infty) - N(\infty)]}{K} & \text{for unblocked case.}
\end{cases} \]

• **Overall utilization of the system**

\[U_O = C + KU_S + U_R. \]

• **Mean rate of generation of primary calls**

\[\bar{\lambda} = \begin{cases}
\lambda E[K - C(\infty) - N(\infty); A(\infty) > 0] & \text{for blocked case,} \\
\lambda E[K - C(\infty) - N(\infty)] & \text{for unblocked case.}
\end{cases} \]

• **Mean waiting time**

\[E[W] = N/\bar{\lambda}. \]

• **Mean response time**

\[E[T] = M/\bar{\lambda}. \]

2.1 **Validation of results**

The numerical results generated by the MOSEL tool in the reliable case (see model descriptions in Appendix) were validated by the Pascal program given in the book of Falin and Templeton [1]. The service rates are the same for all servers in each case. In Table 1 we can see that the corresponding performance measures with RS and FFS disciplines are very close to the reliable case and to each other with very low failure and very high repair rates. The results are the same up to the 6th decimal digit.

The MOSEL models were tested in unreliable case, too. Since only the unreliable single server case was treated earlier, the results were validated by the \(M/M/1//K \) retrial model with server breakdowns which was studied in [11]. The numerical calculations given in [11] correspond to the examples of the paper at hand.
Table 1: Validations in the reliable case

<table>
<thead>
<tr>
<th></th>
<th>Pascal [1]</th>
<th>RS</th>
<th>FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servers:</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of sources:</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Request generation rate:</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Service rate:</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Retrial rate:</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Server failure rate:</td>
<td>–</td>
<td>1e-25</td>
<td>1e-25</td>
</tr>
<tr>
<td>Server repair rate:</td>
<td>–</td>
<td>1e+25</td>
<td>1e+25</td>
</tr>
<tr>
<td>Mean waiting time:</td>
<td>0.1064954794</td>
<td>0.1064959317</td>
<td>0.1064959929</td>
</tr>
<tr>
<td>Mean number of busy servers:</td>
<td>1.8007480431</td>
<td>1.8007485102</td>
<td>1.8007485548</td>
</tr>
<tr>
<td>Mean number of call-repeating sources:</td>
<td>0.1917715262</td>
<td>0.1917717923</td>
<td>0.1917718470</td>
</tr>
</tbody>
</table>

3 Numerical examples

In this section, we present some numerical results to illustrate graphically the differences between the service disciplines in the mean response time, in the utilization of the servers and in the overall system utilization. In the legends of the figures, the FFS policy is referred to as ordered, and the random case where the service rate of the servers is the average of the rates of the heterogeneous cases is referred to as averaged random. In all cases we consider independent breakdowns with the same failure and repair rate for all servers, respectively.

The input system parameters of the Figures 2, 3, and 4 are collected in Table 2 where the RS and FFS disciplines are compared.

The system parameters of Figures 5, 6, 7, 8, and 9 are collected in Table 3 where only the FFS discipline is treated.

In Figures 5 and 7 the effects of the server failure rate on the mean response time are displayed with homogeneous and different servers, respectively. In Figures 6 and 9 we can see the effect of the server failure rate on the overall utilization. In Figure 8 the server utilization is shown in the case of different servers. In each figure the reliable, the blocked, and unblocked (intelligent) cases are analyzed.

3.1 Comments

- In Figure 2 it is shown how the increase of the server failure rate affects the mean response time. The averaged random case has a little better response time than the not averaged random case like in the former figures. The surprising decrease in the mean response time in FFS case can be explained by the help of Figure 3.

- In Figure 3 we can see the server utilization versus the server failure rate with the same parameter setup as in Figure 2. In RS case, the slowest server has the highest utilization and the fastest has the lowest, since it services the request much faster and the requests are assigned to the available and free servers with the same probability. In the beginning of the ordered (FFS) case, the slowest server has the highest utilization too, but as it fails more often, its service is interrupted more often and looses from its utilization much faster than the faster servers, since it gets requests to serve only if all the other servers busy or failed.
Table 2: Input system parameters

<table>
<thead>
<tr>
<th>c</th>
<th>K</th>
<th>λ</th>
<th>µ₁, µ₂, µ₃-µavg</th>
<th>ν</th>
<th>δ, γ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>1</td>
<td>8, 5, 4, 1-4.5</td>
<td>4</td>
<td>x axis</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 3: Input system parameters

<table>
<thead>
<tr>
<th>c</th>
<th>K</th>
<th>λ</th>
<th>µ₁, µ₂</th>
<th>ν</th>
<th>δ, γ</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>0.2</td>
<td>1, 1</td>
<td>1.1</td>
<td>x axis</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.2</td>
<td>1.5, 0.5</td>
<td>1.1</td>
<td>x axis</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 2: Mean response time versus server's failure rate
Figure 3: Server utilization versus server failure rate

Figure 4: Overall utilization versus server failure rate
Figure 5: $E[T]$ versus server failure rate

Figure 6: U_O versus server failure rate
Figure 7: $E[T]$ versus server failure rate

Figure 8: Server utilization versus server failure rate
In Figure 4 the overall utilization is displayed versus the server failure rate. Like in Figure 2 the mean response time, the overall utilization is getting better for a while in the FFS case as the server failure rate increases.

In Figures 5 and 7 it can be observed that the increase of the server failure rate can have a heavy impact on the mean response time, and as it increases the difference between the two unreliable model increases significantly.

In Figures 6 and 9 it is shown that the overall utilization can be very low if the server failure rate increases and the repair rate is not high enough.

4 Conclusions

In this paper, the performance of finite-source retrial queueing systems with homogeneous sources and unreliable heterogeneous (asymmetric) servers is studied. The novelty of the investigation is the introduction of different service rates and different service policies with the unreliability of the servers. The MOSEL software package was used to formulate the model and to calculate the steady-state system performance measures which were graphically displayed to show the differences between the service disciplines in the mean response time, in the utilization of the servers and in the overall system utilization versus server failure rate. It was demonstrated that the FFS discipline has more favorable system measures, as it was expected, and in the case of RS policy, it is more worthy to apply homogeneous servers with the average service rates of the heterogeneous case, at least with these setup of the parameters.
In future, we will extend our model to have a closer look on the effect of non-exponentially distributed service and retrial times. For this we will employ MOSEL-2 [16, 17].

References

A The MOSEL program for the Random Service policy

// ==================================== Constant definitions ====
#define NT 20
#define NS 4

// ==================================== Variables (input parameters) ====
VAR double prgen;
VAR double prretr;
<1..NS> VAR double prrun#;
<1..NS> VAR double cpubreak_idle#;
<1..NS> VAR double cpubreak_busy#;
<1..NS> VAR double cpurepair#;

// ==================================== Node definitions ====
enum cpu_states {cpu_busy, cpu_idle, cpu_failed};
NODE busy_terminals[NT] = NT;
NODE retrying_terminals[NT] = 0;
NODE waiting_terminals[NS] = 0;
<1..NS> NODE cpu#[cpu_states] = cpu_idle;
 NODE freecpus[NS] = NS;
 NODE failedcpus[NS] = 0;
<1..NS> NODE sr#[NS] = 0;

// ==================================== Transitions ====
FROM cpu1[cpu_idle], busy_terminals, freecpus
 TO cpu1[cpu_busy], waiting_terminals
 W prgen*busy_terminals/freecpus;
FROM cpu2[cpu_idle], busy_terminals, freecpus
 TO cpu2[cpu_busy], waiting_terminals
 W prgen*busy_terminals/freecpus;
FROM cpu3[cpu_idle], busy_terminals, freecpus
 TO cpu3[cpu_busy], waiting_terminals
 W prgen*busy_terminals/freecpus;
FROM cpu4[cpu_idle], busy_terminals, freecpus
 TO cpu4[cpu_busy], waiting_terminals
 W prgen*busy_terminals/freecpus;
FROM busy_terminals
 TO retrying_terminals
 IF freecpus==0
 W prgen*busy_terminals;
FROM cpu1[cpu_idle], retrying_terminals, freecpus
 TO cpu1[cpu_busy], waiting_terminals
 W prretr*retrying_terminals/freecpus;
FROM cpu2[cpu_idle], retrying_terminals, freecpus
 TO cpu2[cpu_busy], waiting_terminals
 W prretr*retrying_terminals/freecpus;
FROM cpu3[cpu_idle], retrying_terminals, freecpus
 TO cpu3[cpu_busy], waiting_terminals
 W prretr*retrying_terminals/freecpus;
B The MOSEL program for the Fastest Free Server policy

// ==================================== Constant definitions ====
#define NT 20
#define NS 4

// ============================ Variables (input parameters) ====
VAR double prgen;
VAR double prretr;
<1..NS> VAR double prrun#;
<1..NS> VAR double cpubreak_idle#;
<1..NS> VAR double cpurepair#;

// == Node definitions ====
enum cpu_states {cpu_busy, cpu_idle, cpu_failed};
NODE busy_terminals[NT] = NT;
NODE retrying_terminals[NT] = 0;
NODE waiting_terminals[NS] = 0;
<1..NS> NODE cpu#[cpu_states] = cpu_idle;
 NODE freecpus[NS] = NS;
 NODE failedcpus[NS] = 0;
<1..NS> NODE sr#[NS] = 0;
FROM cpu1[cpu_idle], busy_terminals, freecpus
 TO cpu1[cpu_busy], waiting_terminals
 W prgen*busy_terminals;
FROM cpu2[cpu_idle], busy_terminals, freecpus
 TO cpu2[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 W prgen*busy_terminals;
FROM cpu3[cpu_idle], busy_terminals, freecpus
 TO cpu3[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 AND cpu2==cpu_busy
 W prgen*busy_terminals;
FROM cpu4[cpu_idle], busy_terminals, freecpus
 TO cpu4[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 AND cpu2==cpu_busy
 AND cpu3==cpu_busy
 W prgen*busy_terminals;
FROM busy_terminals
 TO retrying_terminals
 IF freecpus==0
 W prgen*busy_terminals;
FROM cpu1[cpu_idle], retrying_terminals, freecpus
 TO cpu1[cpu_busy], waiting_terminals
 W prretr*retrying_terminals;
FROM cpu2[cpu_idle], retrying_terminals, freecpus
 TO cpu2[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 W prretr*retrying_terminals;
FROM cpu3[cpu_idle], retrying_terminals, freecpus
 TO cpu3[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 AND cpu2==cpu_busy
 W prretr*retrying_terminals;
FROM cpu4[cpu_idle], retrying_terminals, freecpus
 TO cpu4[cpu_busy], waiting_terminals
 IF cpu1==cpu_busy
 AND cpu2==cpu_busy
 AND cpu3==cpu_busy
 W prretr*retrying_terminals;
<1..NS><NS> FROM cpu[#1][cpu_busy], waiting_terminals{
 TO cpu[#1][cpu_idle], busy_terminals, freecpus
 W prrun[#1];
 TO cpu[#1][cpu_failed], retrying_terminals, failedcpus, sr[#2](){#1})
 W cpurebreak[#1];
}<1..NS><NS> FROM cpu[#1][cpu_idle], freecpus
 TO cpu[#1][cpu_failed], failedcpus, sr[#2](){#1})
 W cpurebreak_idle[#1];
<1..NS> IF sr1==# FROM sr1(#), cpu[#][cpu_failed], failedcpus
 TO cpu[#][cpu_idle], freecpus W cpurepair#;
<2..NS> IF sr[#-1]==0 FROM sr[#](sr#) TO sr[#-1](sr#);

// == Results ====
<1..NS> RESULT>> if(cpu#==cpu_busy) cpuutil# += PROB;
<1..NS> RESULT>> if(cpu#==cpu_busy) busycpus += PROB;
RESULT>> if(cpu#==cpu_idle OR cpu#==cpu_busy) goodcpus+=PROB;
RESULT>> if(cpu#==cpu_failed) nfailedcpus += PROB;
RESULT if(busy_terminals>0) busyterm += (PROB*busy_terminals);
RESULT>> termutil = busyterm / NT;
RESULT>> if(retrying_terminals>0) retravg+=(PROB*retrying_terminals);
RESULT>> if(failedcpus>0) repairutil += PROB;
RESULT if(waiting_terminals>0) waitall += (PROB*waiting_terminals);
RESULT>> resptime = (retravg + waitall) / NT / (prgen * termutil);
RESULT>> overallutil = busycpus + termutil*NT + repairutil;