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Required tools

$ a pointwise regularity criterium
— initially the pointwise Holder exponent

® a numerical method to compute the "size" of the sets of points
with a given pointwise regularity

— Frisch-Parisi formula (1985), Wavelet Transform Maxima Method
(Arnéodo and all, 1989), Wavelet-leaders method (Jaffard and all
2002...).
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Pointwise Holder exponent:

y = |z —xg|®

Definition: Let 25 € R and a > 0.
A locally bounded function f : RY — R belongs to C%(x) if there

exists C' > 0 and a polynomial P,, with deg(P) < [a] and such that on
a neighborhood of z,

f(x) = Py (2)] < Cl — o[, (1)
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Pointwise Holder exponent:

y = |z —xg|®

Definition: Let 25 € R and a > 0.
A locally bounded function f : RY — R belongs to C%(x) if there

exists C' > 0 and a polynomial P,, with deg(P) < [a] and such that on
a neighborhood of z,

f(z) = Puy(2)| < Cl = 0]". (1)

— The pointwise Holder exponent of f at xg is
hy(zo) =sup{a: f € C%xo)}.
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Examples:

Takagi-Knopp function

Takagi function with a=1/3

0.5

h¢(xog) = ho at each xg
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Examples:

Fractional brownian motion

fractional Brownian motion H=0.3
1
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with probability 1 each sample path satisfies h¢(xo) = H at each xg
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Examples:

Function whose regularity changes from point to point
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h¢(xop) = xo at each xg
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Krisch-Parisi solution (1985)

Heuristic formula to compute d(h).
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Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).

One first evaluates the “structure function” with f in L4:

$10) = [ 1@ +v) - f@lds

When y gets to 0, we have S,(y) ~ |67 (@),
the claim is

df(h) = inf(gh — (s (q) +d).
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Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).

One first evaluates the “structure function” with f in L4:

$10) = [ 1@ +v) - f@lds

When y gets to 0, we have S,(y) ~ |67 (@),
the claim is

df(h) = inf(gh — (s (q) +d).
— can be viewed with the help of functional spaces

—still difficult to compute

— One can find counterexamples.
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)

Let p € [1,00] and u such that u > —¢. Let f be a functionin L, . f
belongs to TP (xg)
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)
Let p € [1,00] and u such that u > —¢. Let f be a functionin L, . f

loc"

belongs to T?(xy) if there exists R > 0, P a polynomial such that
deg(P) < u, and C' > 0 such that

Vo< R: <1d / f(z) — P(x)pdx> < Cp". (2)
P~ Jz—ao|<p
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)
Let p € [1,00] and u such that u > —¢. Let f be a functionin L, . f

loc"

belongs to T?(xy) if there exists R > 0, P a polynomial such that
deg(P) < u, and C' > 0 such that

Vo< R: <1d / f(z) — P(x)pdx> < Cp". (2)
P~ Jw—zo|<p

— the p-exponent of f at z is u)}(20) = sup{u : f € T (z0)}
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Properties:

® if p < qthen u'(zo) > uf(zo).
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Properties:

® if p < qthen u'(zo) > uf(zo).
® if f € C"(xp) then u's(z0) > h.
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Properties:

® if p < gthen uf(zo) > uf(wo).
if f € C"(xo) then uf(z0) > h.

o o

Less straightforward: Bessel potential of order oo J¢ (fractional
integration operator) maps continuously T?(zo) to T,,, ., (xo).
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Example:

D; =[1/29 —1/23% 1/29], where j > 0

J
g(x) =z |* X252 Ip,(2).
hg(0) = a <ub(0) =a+1/pforanyp > 1.
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® (Goal: study of a signal which is going to be multifractal
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A "p-exponent multifractal" signal

® (Goal: study of a signal which is going to be multifractal
— from the point of view of the HoOlder exponent
— as well as from the point of view of the p-exponent

® Model: developped by Jaffard in the early 90’s with the help of
wavelet basis.
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Wavelet basis

® a setting of discrete wavelets

2¢ — 1 wavelets (¥ i = 1...2¢ — 1 such that

s 2%9O(2y—k),jeZ keZi=1.21—1)isan
orthonormal basis of L?(R¢).
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24 — 1 wavelets (") ; = 1...2¢ — 1 such that
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Wavelet basis

® a setting of discrete wavelets
24 — 1 wavelets (") ; = 1...2¢ — 1 such that
s (2% (2y—k),je€Z,keZi=1.21—1)isan
orthonormal basis of L?(R¢).

& compactly supported.
& To simplify here d =1
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Wavelet basis

® a setting of discrete wavelets

24 — 1 wavelets (") ; = 1...2¢ — 1 such that

s (2% (2y—k),je€Z,keZi=1.21—1)isan
orthonormal basis of L?(R¢).

& compactly supported.

& To simplify here d =1

s we write A = (j, k) = [, &) which yields ¢y = ¢(27. — k)
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The model of Jaffard (1992)

® Indexed by two parameters o > 1 and 5 > 1,
® f(x)= > 2797y with Ao, 8) = | Awm(a,B) such that

A€ (a,B) m2>1
& j=afm

k /



The model of Jaffard (1992)

® Indexed by two parameters o > 1 and 5 > 1,
® f(x)= > 2797 withA(a,8) = J Am(a,B) such that

A€M (e, ) m>1
& j=abm
o 2% —el1+...+€m-1bm_1+ Gmg,/m

s withe; =+land¢; =2""and ¢, =2~
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The model of Jaffard (1992)

® Indexed by two parameters o > 1 and 5 > 1,
® f(x)= > 2797 withA(a,8) = J Am(a,B) such that

A€M (e, ) m>1
& j=afm
o 2% —el1+...+€m-1bm_1+ Gmg,/m

s withe; =+land¢; =2""and ¢, =2~
® Remarks: let ¢y = 27 [ f(x)yx(z)dz with X = (5, k)

Study of an example of multifractal and "sparse" signal — p.14/35



The model of Jaffard (1992)

® Indexed by two parameters o > 1 and 5 > 1,
® f(x)= > 2797 withA(a,8) = J Am(a,B) such that

AEA(a,B) m>1
& j=afm
s 2% =el1+ ... Fem1lm_1 +enll,
s withe; =+land¢; =2""and ¢, =2~
® Remarks: let ¢y = 27 [ f(x)Yx(x)dz with A = (4, k)
o lfapm<j<apf(m+1)foralkcy,=0
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The model of Jaffard (1992)

® Indexed by two parameters o > 1 and 5 > 1,
® f(x)= > 2797 withA(a,8) = J Am(a,B) such that

AEA(a,B) m>1
& j=afm
s 2% =el1+ ... Fem1lm_1 +enll,
s withe; =+land¢; =2""and ¢, =2~
® Remarks: let ¢y = 27 [ f(x)Yx(x)dz with A = (4, k)
o lfapm<j<apf(m+1)foralkcy,=0

s If j = afm then at most 2™ coefficients don’t vanish on a total
amount of 2¢°™ possible coefficients.
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The model of Jaffard (1992)

°

Indexed by two parameters o > 1 and 3 > 1,
flx)= > 2797\ with A(a, 8) = |J An(a, 3) such that

AeA(a,B) m2>1

°

& j=afm
s 2% =el1+ ... Fem1lm_1 +enll,
s withe; =+land¢; =2""and ¢, =2~
® Remarks: let ¢y = 27 [ f(x)Yx(x)dz with A = (4, k)
o lfapm<j<apf(m+1)foralkcy,=0

s If j = afm then at most 2™ coefficients don’t vanish on a total
amount of 2¢°™ possible coefficients.

® o =1 inthe following and S integer.
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Wavelets and Holder exponent

Let zo € Rand f € L (R).

loc

® (Jaffard 2004) Suppose f € C°(R). Letd;(zo) = sup |c4]
>\/C3->\j(5130)

.. log(d;(x
then hy(zg) = lbrgglf lifg@(_f)))
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Wavelets and Holder exponent

Let zo € Rand f € L (R).

loc

® (Jaffard 2004) Suppose f € C°(R). Letd;(zo) = sup |c4]
>\/C3->\j(5130)

.. log(d;(x
then hy(zg) = lbrgglf lifg@(_f)))

T k
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Wavelets and Holder exponent

Let zo € Rand f € L (R).

loc

® (Jaffard 2004) Suppose f € C*(R). Let d;(z9) = sup |c}]
>\/C3->\j(5130)

- log(d;(x
then hs(zg) = hjrgg)lf li(g@(_f)))
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Numerical results

pentn:? =0.80

Iog2{|d|)
Iog2{|d|)

(Abry-Lashermes, 2005)
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Wavelets and Holder exponent

Let 2o € R? and f € L& (RY).

loc

® (Jaffard 2004) Suppose f € C<(R%). Letd;(zo) = sup |ci]
>\/C3->\j($0)

.. ¢ log(d;(x
then h¢(xo) = l%jrgggf li(g@(_f)))
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Wavelets and p-exponent

Let zo € Rand f € L (R).

loc

® (Jaffard-M. 2004) Suppose f < Bg’p
Letd;,(z0) = > 27U (§')3|ea|P. then
)\/C3>\j(ZL’0)

log(d;,p(0))
log(277)

u's(wo) = lim inf
j—>00
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Wavelets and p-exponent

Let zo € Rand f € L (R).

loc

® (Jaffard-M. 2004) Suppose f € Bg’p
Letd;,(z0) = > 27U (§')3|ea|P. then
)\/C3>\j(x0)

log(d;,p(20))
log(277)

u's(wo) = lim inf
j—00

® (Jaffard 2004) Let S¢(j, 20)(x) = \/ S C2 xa(z) then
)\/C3>\j(ﬂ?0)

. log(||S¢(F,x0)llp
“?(750) = lbrgg)lf g(|1|og((é?—j))ll ) d/p
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Approximation rate by dyadics

Let zo € Rand f € L (R).

loc

log(| K (x0)277 —xo])
log(277)

Kj(zo) = argming, qqq(|zo — k2771).

where

® r(xo) = limsup,_,
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Kj(zo) = argming, qqq(|zo — k2771).

where

® r(xo) = limsup,_,

® Consequences:
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Approximation rate by dyadics

Let zo € Rand f € L (R).

loc

log(| K (x0)277 —xo])
log(277)

Kj(zo) = argming, qqq(|zo — k2771).

® r(xo) = limsup,_, where

® Consequences:

— 1(x0) > 1.
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Approximation rate by dyadics

Let zo € Rand f € L (R).

loc

log(| K (z0)2 7 — o))
log(277)
K j(wo) = argminy, oqq (|0 — k2771).

where

® r(zg) = limsup,_,

® Consequences:
— 1(x0) > 1.

— ‘Kj(ib’o)Q_j — ZCo| ~ 2—jr(:c0)_
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Approximation rate by dyadics

Let zo € Rand f € L (R).

loc

® r(xo) =limsup;_, . log“Kf(fg(OQ)f;;_xO') where

K;(zo) = argminy oqq(|z0 — k2771).

® Consequences:

— 1(x0) > 1.

— |K;(20)277 — zg| ~ 2797(@0),

® The dimension of E, = {z¢ : r(z) = r} is exactly +
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Spectrum of singularities

Theorem 1 Leta, g and~, witha =1 and g > 1 an integer and v > 0
a non integer. Letp > 1.

® Suppose r(zg) < B then hy(xg) = 72 and uii(:vo) = Biz;tj)

~ 7(=o)
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Spectrum of singularities

Theorem 1 Leta, g and~, witha =1 and g > 1 an integer and v > 0
a non integer. Letp > 1.

® Suppose r(xy) < 3 then hy(xy) = - and u (z0) = Bi@ﬁ)

r(xo)

® Suppose r(xzg) > 0 then hy(xg) = By andug(:r;o) = B(v + %)
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Spectrum of singularities

Theorem 1 Leta, g and~, witha =1 and g > 1 an integer and v > 0
a non integer. Letp > 1.

® Suppose r(xy) < 3 then hy(xy) = - and u (z0) = Bi@ﬁ)

r(xo)

® Suppose r(xzg) > 0 then hy(xg) = By andug(:r;o) = B(v + %)

® f satisfies a multifractal type formula and its spectrum of

singularities is d(h) = " 1“5’;5](}”.
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Spectrum of singularities

Theorem 1 Leta, g and~, witha =1 and g > 1 an integer and v > 0
a non integer. Letp > 1.

® Suppose r(xy) < 3 then hy(xy) = - and u (z0) = Biz;tj)

r(xo)

® Suppose r(xzg) > 0 then hy(xg) = By andug(:r;o) = B(v + %)

® f satisfies a multifractal type formula and its spectrum of

singularities is d(h) = " 1“5’;5](}”.

® | satisfies a multifractal type formula for the p exponent and its
|
|

1 1 (!
’H—E,(’H—E)B]( )
B(y+3)

spectrum of singularities is df}(u) —
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Spectrum of singularities

Theorem 1 Leta, g and~, witha =1 and g > 1 an integer and v > 0
a non integer. Letp > 1.

® Suppose r(xy) < 3 then hy(xy) = - and u (z0) = Biz;tj)

r(xo)

® Suppose r(xzg) > 0 then hy(xg) = By andug(aco) = B(v + %)

® f satisfies a multifractal type formula and its spectrum of

. e I | h
singularities is d(h) = h,éf]( )
® | satisfies a multifractal type formula for the p exponent and its

ut

1 1 (!
’H—E,(’H-E)B]( )
B(y+3)

spectrum of singularities is df}(u) —

— related to oscillation spaces

feOs s 291 S df < oo withdy = sup |ex|
AEA; A CA
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Multifractal formalism

® LetSy(q,7) =273, |dr|? with dy = sup |ey]
J A CA
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Multifractal formalism

® LetSi(q,5) =279>", 5 |dr|? with dy = sup |cy]
J A CA

let compute S;(q,j) as j — +oo with the help of the scaling
function f defined by

log (Sf(Qaj))) ; (3)

n¢(q) = liminf ( log(2-7)

J—+o0
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Multifractal formalism

® LetSi(q,5) =279>", 5 |dr|? with dy = sup |cy]
J A CA

let compute S;(q,j) as j — +oo with the help of the scaling
function f defined by

n¢(q) = liminf

J—+o0

log(Sf(Q7j)) :
( log(277) ) o

® If f € C°(R") the multifractal formalism claims
df(u) = infy(ug —ns(q) + d)
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Multifractal formalism

g 1/p
Let the p-leader: d) , = (ZA,CA 24 —J>\cx|p) :
define Sf(p, Q7j) — 2_dj2>\€/\j ‘dk,p‘q
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Multifractal formalism

ey 1/p
Let the p-leader: dy , = (Zx@ 240 —9)\cx|p) :

define Sy (p,q,5) =27V \en. ldapl
we estimate the decreasing of S¢(p, ¢,j) when 5 — +oo with the help
of the p-scaling function of f defined by

log (S¢(p,q,7)) .
(i) *

n¢(p, q¢) = liminf

J——+o00

Study of an example of multifractal and "sparse" signal — p.23/35



Multifractal formalism

ey 1/p
Let the p-leader: dy , = (Zx@ 240 —9)\cx|p) :

define Sy (p,q,5) =27V \en. ldapl
we estimate the decreasing of S¢(p, ¢,j) when 5 — +oo with the help
of the p-scaling function of f defined by

log (S¢(p,q,7)) .
(i) *

n¢(p, q¢) = liminf

J——+o00

the multifractal formalism for the p-exponent claims:
di(u) = infy(ug — 0y (p, q) + d),
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Notion of dimension:

Example: Koch’s snowflake
Construction:
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Notion of dimension:

Example: Koch’s snowflake
Construction:

£
A TS
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Notion of dimension:

Example: Koch’s snowflake

o L

Study of an example of multifractal and "sparse" signal — p.27/35



Notion of dimension:

Covering by 4 segments of length 1/3
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Notion of dimension:
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The length of the covering is g"—z
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Notion of dimension:

Covering by 43 segments of length 1/33

The length of the covering is 3.
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Notion of dimension:

Covering by 43 segments of length 1/33

The length of the covering is

3_3.
At step n the length of the covering is g—z.
And so the total length is not finite.
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Notion of dimension:

Covering by 4 square of size 1/3

The area of the covering is =5
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Notion of dimension :

Covering by 16 square of size 1/3°

The area of the covering is 19




Notion of dimension :

Covering by 16 square of size 1/3°

The area of the covering is %2
At step n the area of the covering is 5.
And so the total area is zero.
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Hausdorff dimension:

Letd suchthat0 < lim 4 < +oc.

n——+oo
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Hausdorff dimension:

Letd suchthat0 < lim - < +oo.

n——+oo

d = }E—g is the dimension of the flochon.

The dimension gives the size of the “right” covering.

Study of an example of multifractal and "sparse" signal — p.33/35



Hausdorff dimension:

Letd suchthat0 < lim - < +oo.

n——+oo

d= }E—g is the dimension of the flochon.

The dimension gives the size of the “right” covering.
Hausdorff measure

Definition 1 Let F c R? and s > 0.

Vd > 0, we denote

oo

1=1

where diam(U;) means the diameter of U;.

The s-dimensional Hausdorff measure of F' is H*(F') = %m(l) HI(F) .
_>
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Dimension

® 7°(F) is adecreasing function of s.
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Dimension

® 7{°(F)is a decreasing function of s.

® One can easily check thatif t > s and H*(F') < oo then
HY(F) = 0.
— there exists a critical value of s denoted D such that
H(F)=oifs > Dand H*(F)=0if s < D.

Study of an example of multifractal and "sparse" signal — p.34/35



Dimension

® 7{°(F)is a decreasing function of s.

® One can easily check thatif t > s and H*(F') < oo then
HY(F) = 0.
— there exists a critical value of s denoted D such that
H(F)=o0cifs>Dand H*(F) =0if s < D.

mnH S (F)

mn—+ co

mnD mns
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Definition of the Hausdorff dimension

Study of an example of multifractal and "sparse" signal — p.35/35



Definition of the Hausdorff dimension

® Definition 2 Under the previous assumptions, the Hausdorff
dimension of F' is

D = inf{s, H*(F) = 0} = sup{s, H*(F') = +o0}.
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Definition of the Hausdorff dimension

® Definition 2 Under the previous assumptions, the Hausdorff
dimension of F' is

D = inf{s, H*(F) = 0} = sup{s, H*(F') = +o0}.

® \Very difficult to compute numerically for one set.
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Definition of the Hausdorff dimension

® Definition 2 Under the previous assumptions, the Hausdorff
dimension of F' is

D = inf{s, H*(F) = 0} = sup{s, H*(F') = +o0}.

® \Very difficult to compute numerically for one set.

® Impossible to compute when you have an infinity of sets !
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