Study of an example of multifractal and "sparse" signal

C. Coiffard, C. Melot, T. Willer

LATP, Aix-Marseille Université, Ecole Centrale Marseille, France.

Introduction

Initial motivation for multifractal analysis:

Introduction

- *Initial motivation for multifractal analysis:*
- \rightarrow study of the velocity signal of a turbulent fluid

Introduction

Initial motivation for multifractal analysis:

 $\rightarrow\,$ study of the velocity signal of a turbulent fluid

a pointwise regularity criterium

- a pointwise regularity criterium
- $\rightarrow\,$ initially the pointwise Hölder exponent

- a pointwise regularity criterium
- \rightarrow initially the pointwise Hölder exponent
- a numerical method to compute the "size" of the sets of points with a given pointwise regularity

- a pointwise regularity criterium
- \rightarrow initially the pointwise Hölder exponent
- a numerical method to compute the "size" of the sets of points with a given pointwise regularity
- → Frisch-Parisi formula (1985), Wavelet Transform Maxima Method (Arnéodo and all, 1989), Wavelet-leaders method (Jaffard and all 2002...).

Pointwise Hölder exponent:

Pointwise Hölder exponent:

Definition: Let $x_0 \in \mathbb{R}^d$ and $\alpha \ge 0$. A locally bounded function $f : \mathbb{R}^d \to \mathbb{R}$ belongs to $C^{\alpha}(x_0)$ if there exists C > 0 and a polynomial P_{x_0} with $deg(P) \le [\alpha]$ and such that on a neighborhood of x_0 ,

$$|f(x) - P_{x_0}(x)| \le C|x - x_0|^{\alpha}.$$
(1)

Pointwise Hölder exponent:

Definition: Let $x_0 \in \mathbb{R}^d$ and $\alpha \ge 0$. A locally bounded function $f : \mathbb{R}^d \to \mathbb{R}$ belongs to $C^{\alpha}(x_0)$ if there exists C > 0 and a polynomial P_{x_0} with $deg(P) \le [\alpha]$ and such that on a neighborhood of x_0 ,

$$|f(x) - P_{x_0}(x)| \le C|x - x_0|^{\alpha}.$$
(1)

→ The pointwise Hölder exponent of f at x_0 is $h_f(x_0) = \sup\{\alpha : f \in C^{\alpha}(x_0)\}.$

Takagi-Knopp function

Takagi-Knopp function

 $h_f(x_0) = h_0$ at each x_0

Fractional brownian motion

Fractional brownian motion

with probability 1 each sample path satisfies $h_f(x_0) = H$ at each x_0

Function whose regularity changes from point to point

Function whose regularity changes from point to point

 $h_f(x_0) = x_0$ at each x_0

Heuristic formula to compute d(h).

Heuristic formula to compute d(h).

One first evaluates the "structure function" with f in L^q :

$$S_f^q(y) = \int_{\mathbb{R}^d} |f(x+y) - f(x)|^q dx$$

When y gets to 0, we have $S_q(y) \sim |y|^{\zeta_f(q)}$, the claim is

$$d_f(h) = \inf_q (qh - \zeta_f(q) + d).$$

Heuristic formula to compute d(h).

One first evaluates the "structure function" with f in L^q :

$$S_f^q(y) = \int_{\mathbb{R}^d} |f(x+y) - f(x)|^q dx$$

When y gets to 0, we have $S_q(y) \sim |y|^{\zeta_f(q)}$, the claim is

$$d_f(h) = \inf_q (qh - \zeta_f(q) + d).$$

 \rightarrow can be viewed with the help of functional spaces

Heuristic formula to compute d(h).

One first evaluates the "structure function" with f in L^q :

$$S_f^q(y) = \int_{\mathbb{R}^d} |f(x+y) - f(x)|^q dx$$

When y gets to 0, we have $S_q(y) \sim |y|^{\zeta_f(q)}$, the claim is

$$d_f(h) = \inf_q (qh - \zeta_f(q) + d).$$

- \rightarrow can be viewed with the help of functional spaces
- $\rightarrow~$ still difficult to compute

Heuristic formula to compute d(h).

One first evaluates the "structure function" with f in L^q :

$$S_f^q(y) = \int_{\mathbb{R}^d} |f(x+y) - f(x)|^q dx$$

When y gets to 0, we have $S_q(y) \sim |y|^{\zeta_f(q)}$, the claim is

$$d_f(h) = \inf_q (qh - \zeta_f(q) + d).$$

- \rightarrow can be viewed with the help of functional spaces
- $\rightarrow~$ still difficult to compute
- $\rightarrow~$ One can find counterexamples.

Exploring pointwise regularity

The "*p*-exponent" **Definition:**(Calderon and Zygmund 1961) Let $p \in [1, \infty]$ and u such that $u \ge -\frac{d}{p}$. Let f be a function in L_{loc}^{p} . fbelongs to $T_{u}^{p}(x_{0})$

Exploring pointwise regularity

The "*p*-exponent" **Definition:**(Calderon and Zygmund 1961) Let $p \in [1, \infty]$ and u such that $u \ge -\frac{d}{p}$. Let f be a function in L_{loc}^p . fbelongs to $T_u^p(x_0)$ if there exists R > 0, P a polynomial such that $deg(P) \le u$, and C > 0 such that

$$\forall \rho \le R: \left(\frac{1}{\rho^d} \int_{|x-x_0| \le \rho} |f(x) - P(x)|^p dx\right)^{\frac{1}{p}} \le C\rho^u.$$
(2)

Exploring pointwise regularity

The "*p*-exponent" **Definition:**(Calderon and Zygmund 1961) Let $p \in [1, \infty]$ and u such that $u \ge -\frac{d}{p}$. Let f be a function in L_{loc}^p . fbelongs to $T_u^p(x_0)$ if there exists R > 0, P a polynomial such that $deg(P) \le u$, and C > 0 such that

$$\forall \rho \le R: \left(\frac{1}{\rho^d} \int_{|x-x_0| \le \rho} |f(x) - P(x)|^p dx\right)^{\frac{1}{p}} \le C\rho^u.$$
 (2)

 \rightarrow the *p*-exponent of *f* at x_0 is $u_f^p(x_0) = \sup\{u : f \in T_u^p(x_0)\}$

Properties:

• if p < q then $u_f^p(x_0) \ge u_f^q(x_0)$.

Properties:

• if p < q then $u_f^p(x_0) \ge u_f^q(x_0)$. • if $f \in C^h(x_0)$ then $u_f^p(x_0) \ge h$.

Properties:

- if p < q then $u_f^p(x_0) \ge u_f^q(x_0)$.
- If $f \in C^h(x_0)$ then $u_f^p(x_0) \ge h$.
- Less straightforward: Bessel potential of order $\alpha \mathcal{J}^{\alpha}$ (fractional integration operator) maps continuously $T_{u}^{p}(x_{0})$ to $T_{u+\alpha}^{p}(x_{0})$.

$$D_{j} = [1/2^{j} - 1/2^{3j}, 1/2^{j}], \text{ where } j \ge 0$$

$$g(x) = |x|^{\alpha} \sum_{j=1}^{\infty} I_{D_{j}}(x).$$

$$h_{g}(0) = \alpha < u_{g}^{p}(0) = \alpha + 1/p \text{ for any } p \ge 1.$$

Goal: study of a signal which is going to be multifractal

- Goal: study of a signal which is going to be multifractal
- \rightarrow from the point of view of the Hölder exponent

- Goal: study of a signal which is going to be multifractal
- \rightarrow from the point of view of the Hölder exponent
- \rightarrow as well as from the point of view of the p-exponent

- Goal: study of a signal which is going to be multifractal
- \rightarrow from the point of view of the Hölder exponent
- \rightarrow as well as from the point of view of the p-exponent
- Model: developped by Jaffard in the early 90's with the help of wavelet basis.

Wavelet basis

a setting of discrete wavelets

Wavelet basis

a setting of discrete wavelets

 $2^d - 1$ wavelets $\psi^{(i)}, i = 1...2^d - 1$ such that

Wavelet basis

a setting of discrete wavelets

 $2^d - 1$ wavelets $\psi^{(i)}, i = 1...2^d - 1$ such that

(2^{dj/2} ψ⁽ⁱ⁾(2^jx − k), j ∈ Z, k ∈ Z^d, i = 1...2^d − 1) is an orthonormal basis of L²(ℝ^d).
Wavelet basis

a setting of discrete wavelets

 $2^d - 1$ wavelets $\psi^{(i)}, i = 1...2^d - 1$ such that

- (2^{dj/2} ψ⁽ⁱ⁾(2^jx − k), j ∈ Z, k ∈ Z^d, i = 1...2^d − 1) is an orthonormal basis of L²(ℝ^d).
- compactly supported.

Wavelet basis

a setting of discrete wavelets

 $2^d - 1$ wavelets $\psi^{(i)}, i = 1...2^d - 1$ such that

- (2^{dj/2} ψ⁽ⁱ⁾(2^jx − k), j ∈ Z, k ∈ Z^d, i = 1...2^d − 1) is an orthonormal basis of L²(ℝ^d).
- compactly supported.
- To simplify here d = 1

Wavelet basis

a setting of discrete wavelets

 $2^d - 1$ wavelets $\psi^{(i)}, i = 1...2^d - 1$ such that

- $(2^{\frac{dj}{2}}\psi^{(i)}(2^jx-k), j \in \mathbb{Z}, k \in \mathbb{Z}^d, i = 1...2^d 1)$ is an orthonormal basis of $L^2(\mathbb{R}^d)$.
- compactly supported.
- To simplify here d = 1
- we write $\lambda = (j,k) = [\frac{k}{2^j}, \frac{k+1}{2^j}]$ which yields $\psi_{\lambda} = \psi(2^j. k)$

•
$$f(x) = \sum_{\lambda \in \Lambda(\alpha,\beta)} 2^{-j\gamma} \psi_{\lambda}$$
 with $\Lambda(\alpha,\beta) = \bigcup_{m \ge 1} \Lambda_m(\alpha,\beta)$ such that

•
$$f(x) = \sum_{\lambda \in \Lambda(\alpha,\beta)} 2^{-j\gamma} \psi_{\lambda}$$
 with $\Lambda(\alpha,\beta) = \bigcup_{m \ge 1} \Lambda_m(\alpha,\beta)$ such that
• $j = \alpha \beta m$

•
$$f(x) = \sum_{\lambda \in \Lambda(\alpha,\beta)} 2^{-j\gamma} \psi_{\lambda}$$
 with $\Lambda(\alpha,\beta) = \bigcup_{m \ge 1} \Lambda_m(\alpha,\beta)$ such that

•
$$j = \alpha \beta m$$

- Indexed by two parameters $\alpha \ge 1$ and $\beta \ge 1$,
- $f(x) = \sum_{\lambda \in \Lambda(\alpha,\beta)} 2^{-j\gamma} \psi_{\lambda} \text{ with } \Lambda(\alpha,\beta) = \bigcup_{m \ge 1} \Lambda_m(\alpha,\beta) \text{ such that }$

$$j = \alpha \beta m$$

$${\scriptstyle
m I\!\! I}$$
 with $\epsilon_i=\pm 1$ and $\ell_i=2^{-i}$ and $\ell_i'=2^{-lpha i}$

- Indexed by two parameters $\alpha \ge 1$ and $\beta \ge 1$,

$$j = \alpha \beta m$$

$${\scriptstyle
m I\!\! I}$$
 with $\epsilon_i=\pm 1$ and $\ell_i=2^{-i}$ and $\ell_i'=2^{-lpha i}$

P Remarks: let $c_{\lambda} = 2^{j} \int f(x) \psi_{\lambda}(x) dx$ with $\lambda = (j, k)$

- Indexed by two parameters $\alpha \ge 1$ and $\beta \ge 1$,

$$j = \alpha \beta m$$

$${old s}$$
 with $\epsilon_i=\pm 1$ and $\ell_i=2^{-i}$ and $\ell_i'=2^{-lpha i}$

- Remarks: let $c_{\lambda} = 2^{j} \int f(x) \psi_{\lambda}(x) dx$ with $\lambda = (j, k)$
 - If $\alpha\beta m < j < \alpha\beta(m+1)$ for all $k c_{\lambda} = 0$

- Indexed by two parameters $\alpha \ge 1$ and $\beta \ge 1$,

$$j = \alpha \beta m$$

$${old s}$$
 with $\epsilon_i=\pm 1$ and $\ell_i=2^{-i}$ and $\ell_i'=2^{-lpha i}$

- **9** Remarks: let $c_{\lambda} = 2^{j} \int f(x)\psi_{\lambda}(x)dx$ with $\lambda = (j,k)$
 - If $\alpha\beta m < j < \alpha\beta(m+1)$ for all $k c_{\lambda} = 0$
 - If $j = \alpha \beta m$ then at most 2^m coefficients don't vanish on a total amount of $2^{\alpha\beta m}$ possible coefficients.

- Indexed by two parameters $\alpha \ge 1$ and $\beta \ge 1$,

$$j = \alpha \beta m$$

- with $\epsilon_i = \pm 1$ and $\ell_i = 2^{-i}$ and $\ell'_i = 2^{-\alpha i}$
- **P** Remarks: let $c_{\lambda} = 2^{j} \int f(x)\psi_{\lambda}(x)dx$ with $\lambda = (j,k)$

• If $\alpha\beta m < j < \alpha\beta(m+1)$ for all $k c_{\lambda} = 0$

- If $j = \alpha \beta m$ then at most 2^m coefficients don't vanish on a total amount of $2^{\alpha\beta m}$ possible coefficients.
- \square $\alpha = 1$ in the following and β integer.

Let $x_0 \in \mathbb{R}$ and $f \in L^{\infty}_{loc}(\mathbb{R})$.

● (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_j(x_0) = \sup_{\lambda' \subset 3.\lambda_j(x_0)} |c'_{\lambda}|$

Let $x_0 \in \mathbb{R}$ and $f \in L^{\infty}_{loc}(\mathbb{R})$.

● (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_j(x_0) = \sup_{\lambda' \subset 3.\lambda_j(x_0)} |c'_{\lambda}|$

Let $x_0 \in \mathbb{R}$ and $f \in L^{\infty}_{loc}(\mathbb{R})$.

■ (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_j(x_0) = \sup_{\lambda' \subset 3.\lambda_j(x_0)} |c'_{\lambda}|$

Numerical results

(Abry-Lashermes, 2005)

Let $x_0 \in \mathbb{R}^d$ and $f \in L^{\infty}_{loc}(\mathbb{R}^d)$.

Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R}^d)$. Let $d_j(x_0) = \sup_{\lambda' \subset 3.\lambda_j(x_0)} |c'_{\lambda}|$

Wavelets and p-exponent

Let $x_0 \in \mathbb{R}$ and $f \in L^{\infty}_{loc}(\mathbb{R})$.

_

• (Jaffard-M. 2004) Suppose
$$f \in B_p^{\delta,p}$$

Let $d_{j,p}(x_0) = \sum_{\lambda' \subset 3\lambda_j(x_0)} 2^{-dj'} (j')^{-3} |c_{\lambda'}|^p$. then
 $u_f^p(x_0) = \liminf_{j \to \infty} \frac{\log(d_{j,p}(x_0))}{\log(2^{-j})}$

Wavelets and p-exponent

(Jaffard-M. 2004) Suppose
$$f \in B_p^{\delta,p}$$

Let $d_{j,p}(x_0) = \sum_{\lambda' \subset 3\lambda_j(x_0)} 2^{-dj'}(j')^{-3} |c_{\lambda'}|^p$. then $u_f^p(x_0) = \liminf_{j \to \infty} \frac{\log(d_{j,p}(x_0))}{\log(2^{-j})}$
(Jaffard 2004) Let $S_f(j, x_0)(x) = \sqrt{\sum_{\lambda' \subset 3\lambda_j(x_0)} C_\lambda^2 \chi_\lambda(x)}$ then

$$u_f^p(x_0) = \liminf_{j \to \infty} \frac{\log(\|S_f(j, x_0)\|_p)}{\log(2^{-j})} - d/p$$

•
$$r(x_0) = \limsup_{j \to \infty} \frac{\log(|K_j(x_0)2^{-j} - x_0|)}{\log(2^{-j})}$$
 where $K_j(x_0) = \operatorname{argmin}_{k \text{ odd}}(|x_0 - k2^{-j}|).$

- $r(x_0) = \limsup_{j \to \infty} \frac{\log(|K_j(x_0)2^{-j} x_0|)}{\log(2^{-j})}$ where $K_j(x_0) = \operatorname{argmin}_{k \text{ odd}}(|x_0 k2^{-j}|).$
 - Consequences:

- $r(x_0) = \limsup_{j \to \infty} \frac{\log(|K_j(x_0)2^{-j} x_0|)}{\log(2^{-j})}$ where $K_j(x_0) = \operatorname{argmin}_{k \text{ odd}}(|x_0 k2^{-j}|).$
 - Consequences:

$$\rightarrow r(x_0) \ge 1.$$

- $r(x_0) = \limsup_{j \to \infty} \frac{\log(|K_j(x_0)2^{-j} x_0|)}{\log(2^{-j})}$ where $K_j(x_0) = \operatorname{argmin}_{k \text{ odd}}(|x_0 k2^{-j}|).$
 - Consequences:

→
$$r(x_0) \ge 1$$
.
→ $|K_j(x_0)2^{-j} - x_0| \sim 2^{-jr(x_0)}$.

Let $x_0 \in \mathbb{R}$ and $f \in L^{\infty}_{loc}(\mathbb{R})$.

- $r(x_0) = \limsup_{j \to \infty} \frac{\log(|K_j(x_0)2^{-j} x_0|)}{\log(2^{-j})}$ where $K_j(x_0) = \operatorname{argmin}_{k \text{ odd}}(|x_0 k2^{-j}|).$
- Consequences:
- $\rightarrow r(x_0) \ge 1.$

$$\rightarrow |K_j(x_0)2^{-j} - x_0| \sim 2^{-jr(x_0)}$$

• The dimension of $E_r = \{x_0 : r(x_0) = r\}$ is exactly $\frac{1}{r}$

Theorem 1 Let α , β and γ , with $\alpha = 1$ and $\beta \ge 1$ an integer and $\gamma > 0$ a non integer. Let $p \ge 1$.

• Suppose $r(x_0) < \beta$ then $h_f(x_0) = \frac{\beta \gamma}{r(x_0)}$ and $u_p^f(x_0) = \frac{\beta(\gamma + \frac{1}{p})}{r(x_0)}$

Theorem 1 Let α , β and γ , with $\alpha = 1$ and $\beta \ge 1$ an integer and $\gamma > 0$ a non integer. Let $p \ge 1$.

Suppose $r(x_0) < \beta$ then $h_f(x_0) = \frac{\beta \gamma}{r(x_0)}$ and $u_p^f(x_0) = \frac{\beta(\gamma + \frac{1}{p})}{r(x_0)}$

Suppose $r(x_0) \ge \beta$ then $h_f(x_0) = \beta \gamma$ and $u_p^f(x_0) = \beta(\gamma + \frac{1}{p})$.

Theorem 1 Let α , β and γ , with $\alpha = 1$ and $\beta \ge 1$ an integer and $\gamma > 0$ a non integer. Let $p \ge 1$.

Suppose $r(x_0) < \beta$ then $h_f(x_0) = \frac{\beta\gamma}{r(x_0)}$ and $u_p^f(x_0) = \frac{\beta(\gamma + \frac{1}{p})}{r(x_0)}$

• Suppose $r(x_0) \ge \beta$ then $h_f(x_0) = \beta \gamma$ and $u_p^f(x_0) = \beta(\gamma + \frac{1}{p})$.

• *f* satisfies a multifractal type formula and its spectrum of singularities is $d_f(h) = \frac{h \mathbf{1}_{[\gamma,\gamma\beta]}(h)}{\beta\gamma}$.

Theorem 1 Let α , β and γ , with $\alpha = 1$ and $\beta \ge 1$ an integer and $\gamma > 0$ a non integer. Let $p \ge 1$.

Suppose $r(x_0) < \beta$ then $h_f(x_0) = \frac{\beta\gamma}{r(x_0)}$ and $u_p^f(x_0) = \frac{\beta(\gamma + \frac{1}{p})}{r(x_0)}$

• Suppose $r(x_0) \ge \beta$ then $h_f(x_0) = \beta \gamma$ and $u_p^f(x_0) = \beta(\gamma + \frac{1}{p})$.

- *f* satisfies a multifractal type formula and its spectrum of singularities is $d_f(h) = \frac{h \mathbf{1}_{[\gamma,\gamma\beta]}(h)}{\beta\gamma}$.
- *f* satisfies a multifractal type formula for the *p* exponent and its spectrum of singularities is $d_f^p(u) = \frac{u \, \mathbf{1}_{[\gamma + \frac{1}{p}, (\gamma + \frac{1}{p})\beta]}(u)}{\beta(\gamma + \frac{1}{p})}$.

Theorem 1 Let α , β and γ , with $\alpha = 1$ and $\beta \ge 1$ an integer and $\gamma > 0$ a non integer. Let $p \ge 1$.

Suppose $r(x_0) < \beta$ then $h_f(x_0) = \frac{\beta\gamma}{r(x_0)}$ and $u_p^f(x_0) = \frac{\beta(\gamma + \frac{1}{p})}{r(x_0)}$

- Suppose $r(x_0) \ge \beta$ then $h_f(x_0) = \beta \gamma$ and $u_p^f(x_0) = \beta(\gamma + \frac{1}{p})$.
- *f* satisfies a multifractal type formula and its spectrum of singularities is $d_f(h) = \frac{h \mathbf{1}_{[\gamma,\gamma\beta]}(h)}{\beta\gamma}$.
- *f* satisfies a multifractal type formula for the *p* exponent and its spectrum of singularities is $d_f^p(u) = \frac{u \, \mathbf{1}_{[\gamma + \frac{1}{p}, (\gamma + \frac{1}{p})\beta]}(u)}{\beta(\gamma + \frac{1}{p})}.$
- $\rightarrow~\textit{related to oscillation spaces}$

$$f \in \mathcal{O}_q^s \Leftrightarrow 2^{sq-1} \sum_{\lambda \in \Lambda_j} d_\lambda^q < \infty \text{ with } d_\lambda = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$$

• Let
$$S_f(q,j) = 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q$$
 with $d_\lambda = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$

• Let
$$S_f(q,j) = 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q$$
 with $d_\lambda = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$

let compute $S_f(q, j)$ as $j \to +\infty$ with the help of the scaling function f defined by

$$\eta_f(q) = \liminf_{j \to +\infty} \left(\frac{\log \left(S_f(q, j) \right)}{\log(2^{-j})} \right); \tag{3}$$

• Let
$$S_f(q,j) = 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_\lambda|^q$$
 with $d_\lambda = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$

let compute $S_f(q, j)$ as $j \to +\infty$ with the help of the scaling function f defined by

$$\eta_f(q) = \liminf_{j \to +\infty} \left(\frac{\log \left(S_f(q, j) \right)}{\log(2^{-j})} \right); \tag{3}$$

If $f \in C^{\delta}(\mathbb{R}^n)$ the multifractal formalism claims $d_f(u) = \inf_q (uq - \eta_f(q) + d)$

Let the *p*-leader: $d_{\lambda,p} = \left(\sum_{\lambda'\subset\lambda} 2^{-d(j'-j)} |c_{\lambda'}|^p\right)^{1/p}$. define $S_f(p,q,j) = 2^{-dj} \sum_{\lambda\in\Lambda_j} |d_{\lambda,p}|^q$

Let the *p*-leader: $d_{\lambda,p} = \left(\sum_{\lambda'\subset\lambda} 2^{-d(j'-j)} |c_{\lambda'}|^p\right)^{1/p}$. define $S_f(p,q,j) = 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda,p}|^q$ we estimate the decreasing of $S_f(p,q,j)$ when $j \to +\infty$ with the help of the *p*-scaling function of *f* defined by

$$\eta_f(p,q) = \liminf_{j \to +\infty} \left(\frac{\log\left(S_f(p,q,j)\right)}{\log(2^{-j})} \right); \tag{4}$$

Let the *p*-leader: $d_{\lambda,p} = \left(\sum_{\lambda'\subset\lambda} 2^{-d(j'-j)} |c_{\lambda'}|^p\right)^{1/p}$. define $S_f(p,q,j) = 2^{-dj} \sum_{\lambda \in \Lambda_j} |d_{\lambda,p}|^q$ we estimate the decreasing of $S_f(p,q,j)$ when $j \to +\infty$ with the help of the *p*-scaling function of *f* defined by

$$\eta_f(p,q) = \liminf_{j \to +\infty} \left(\frac{\log\left(S_f(p,q,j)\right)}{\log(2^{-j})} \right); \tag{4}$$

the multifractal formalism for the *p*-exponent claims:

$$d_f^p(u) = \inf_q (uq - \eta_f(p,q) + d),$$

Covering by 4 segments of length 1/3

Covering by 4 segments of length 1/3

The length of the covering is $\frac{4}{3}$

Covering by 4^2 segments of length $1/3^2$

The length of the covering is $\frac{4^2}{3^2}$

Covering by 4^3 segments of length $1/3^3$

The length of the covering is $\frac{4^3}{3^3}$.

Covering by 4^3 segments of length $1/3^3$

The length of the covering is $\frac{4^3}{3^3}$. At step *n* the length of the covering is $\frac{4^n}{3^n}$. And so the total length is not finite.

Covering by 4 square of size 1/3

The area of the covering is $\frac{4}{3^2}$

Covering by 16 square of size $1/3^2$

The area of the covering is $\frac{16}{3^4}$

Covering by 16 square of size $1/3^2$

The area of the covering is $\frac{16}{3^4}$ At step *n* the area of the covering is $\frac{4^n}{3^{2n}}$. And so the total area is zero.

Hausdorff dimension:

Let d such that $0 < \lim_{n \to +\infty} \frac{4^n}{3^{dn}} < +\infty$.

Hausdorff dimension:

Let d such that $0 < \lim_{n \to +\infty} \frac{4^n}{3^{dn}} < +\infty$. $d = \frac{\ln 4}{\ln 3}$ is the dimension of the flochon. The dimension gives the size of the "right" covering.

Hausdorff dimension:

Let d such that $0 < \lim_{n \to +\infty} \frac{4^n}{3^{dn}} < +\infty$. $d = \frac{\ln 4}{\ln 3}$ is the dimension of the flochon. The dimension gives the size of the "right" covering. Hausdorff measure

Definition 1 Let $F \subset \mathbb{R}^d$ and $s \ge 0$.

 $\forall \delta > 0$, we denote

$$\mathcal{H}^{s}_{\delta}(F) = \inf\left\{\sum_{i=1}^{\infty} |U_{i}|^{s} : F \subset \bigcup_{i} U_{i}, diam(U_{i}) \leq \delta\right\}$$

where $diam(U_i)$ means the diameter of U_i . The *s*-dimensional Hausdorff measure of *F* is $\mathcal{H}^s(F) = \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(F)$.

Dimension

Dimension

- \mathfrak{P} $\mathcal{H}^{s}(F)$ is a decreasing function of s.
- One can easily check that if t > s and $\mathcal{H}^s(F) < \infty$ then $\mathcal{H}^t(F) = 0$.

 \rightarrow there exists a critical value of *s* denoted *D* such that $\mathcal{H}^{s}(F) = \infty$ if s > D and $\mathcal{H}^{s}(F) = 0$ if s < D.

Dimension

- \mathfrak{P} $\mathcal{H}^{s}(F)$ is a decreasing function of s.
- One can easily check that if t > s and $\mathcal{H}^s(F) < \infty$ then $\mathcal{H}^t(F) = 0$.

 \rightarrow there exists a critical value of *s* denoted *D* such that $\mathcal{H}^{s}(F) = \infty$ if s > D and $\mathcal{H}^{s}(F) = 0$ if s < D.

Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$D = \inf\{s, \mathcal{H}^s(F) = 0\} = \sup\{s, \mathcal{H}^s(F) = +\infty\}.$$

Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$D = \inf\{s, \mathcal{H}^s(F) = 0\} = \sup\{s, \mathcal{H}^s(F) = +\infty\}.$$

Very difficult to compute numerically for one set.

Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$D = \inf\{s, \mathcal{H}^s(F) = 0\} = \sup\{s, \mathcal{H}^s(F) = +\infty\}.$$

- Very difficult to compute numerically for one set.
- Impossible to compute when you have an infinity of sets !