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Required tools

a pointwise regularity criterium
→ initially the pointwise Hölder exponent

a numerical method to compute the "size" of the sets of points
with a given pointwise regularity

→ Frisch-Parisi formula (1985), Wavelet Transform Maxima Method
(Arnéodo and all, 1989), Wavelet-leaders method (Jaffard and all
2002...).
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y = |x − x0|α
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Pointwise Hölder exponent:

y = |x − x0|α

x0

Definition: Let x0 ∈ Rd and α ≥ 0.
A locally bounded function f : Rd → R belongs to Cα(x0) if there
exists C > 0 and a polynomial Px0 with deg(P ) ≤ [α] and such that on
a neighborhood of x0,

|f(x)− Px0(x)| ≤ C|x− x0|α. (1)
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Pointwise Hölder exponent:

y = |x − x0|α

x0

Definition: Let x0 ∈ Rd and α ≥ 0.
A locally bounded function f : Rd → R belongs to Cα(x0) if there
exists C > 0 and a polynomial Px0 with deg(P ) ≤ [α] and such that on
a neighborhood of x0,

|f(x)− Px0(x)| ≤ C|x− x0|α. (1)

→ The pointwise Hölder exponent of f at x0 is
hf (x0) = sup{α : f ∈ Cα(x0)}.
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Examples:

Takagi-Knopp function
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hf (x0) = h0 at each x0
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Examples:

Fractional brownian motion
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fractional Brownian motion H=0.3

with probability 1 each sample path satisfies hf (x0) = H at each x0
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Examples:

Function whose regularity changes from point to point
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hf (x0) = x0 at each x0
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Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).
One first evaluates the “structure function” with f in Lq:

Sq
f (y) =

∫

Rd

|f(x+ y)− f(x)|qdx

When y gets to 0, we have Sq(y) ∼ |y|ζf (q),
the claim is

df (h) = inf
q
(qh− ζf (q) + d).

Study of an example of multifractal and "sparse" signal – p.8/35



Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).
One first evaluates the “structure function” with f in Lq:

Sq
f (y) =

∫

Rd

|f(x+ y)− f(x)|qdx

When y gets to 0, we have Sq(y) ∼ |y|ζf (q),
the claim is

df (h) = inf
q
(qh− ζf (q) + d).

→ can be viewed with the help of functional spaces

Study of an example of multifractal and "sparse" signal – p.8/35



Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).
One first evaluates the “structure function” with f in Lq:

Sq
f (y) =

∫

Rd

|f(x+ y)− f(x)|qdx

When y gets to 0, we have Sq(y) ∼ |y|ζf (q),
the claim is

df (h) = inf
q
(qh− ζf (q) + d).

→ can be viewed with the help of functional spaces
→ still difficult to compute

Study of an example of multifractal and "sparse" signal – p.8/35



Frisch-Parisi solution (1985)

Heuristic formula to compute d(h).
One first evaluates the “structure function” with f in Lq:

Sq
f (y) =

∫

Rd

|f(x+ y)− f(x)|qdx

When y gets to 0, we have Sq(y) ∼ |y|ζf (q),
the claim is

df (h) = inf
q
(qh− ζf (q) + d).

→ can be viewed with the help of functional spaces
→ still difficult to compute
→ One can find counterexamples.
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)
Let p ∈ [1,∞] and u such that u ≥ − d

p . Let f be a function in Lp
loc. f

belongs to T p
u (x0)
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)
Let p ∈ [1,∞] and u such that u ≥ − d

p . Let f be a function in Lp
loc. f

belongs to T p
u (x0) if there exists R > 0, P a polynomial such that

deg(P ) ≤ u, and C > 0 such that

∀ρ ≤ R :

(
1

ρd

∫

|x−x0|≤ρ
|f(x)− P (x)|pdx

) 1
p

≤ Cρu. (2)
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Exploring pointwise regularity

The "p-exponent"
Definition:(Calderon and Zygmund 1961)
Let p ∈ [1,∞] and u such that u ≥ − d

p . Let f be a function in Lp
loc. f

belongs to T p
u (x0) if there exists R > 0, P a polynomial such that

deg(P ) ≤ u, and C > 0 such that

∀ρ ≤ R :

(
1

ρd

∫

|x−x0|≤ρ
|f(x)− P (x)|pdx

) 1
p

≤ Cρu. (2)

→ the p-exponent of f at x0 is up
f (x0) = sup{u : f ∈ T p

u (x0)}
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Properties:

if p < q then up
f (x0) ≥ uq

f (x0).
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Properties:

if p < q then up
f (x0) ≥ uq

f (x0).

if f ∈ Ch(x0) then up
f (x0) ≥ h.
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Properties:

if p < q then up
f (x0) ≥ uq

f (x0).

if f ∈ Ch(x0) then up
f (x0) ≥ h.

Less straightforward: Bessel potential of order α J α (fractional
integration operator) maps continuously T p

u (x0) to T p
u+α(x0).
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Example:

Dj = [ 1/2j − 1/23j , 1/2j ], where j ≥ 0

g(x) = |x |α
∑∞

j=1 IDj (x).

hg(0) = α < up
g(0) = α+ 1/p for any p ≥ 1.
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A "p-exponent multifractal" signal

Goal: study of a signal which is going to be multifractal
→ from the point of view of the Hölder exponent
→ as well as from the point of view of the p-exponent

Model: developped by Jaffard in the early 90’s with the help of
wavelet basis.
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Wavelet basis

a setting of discrete wavelets
2d − 1 wavelets ψ(i), i = 1...2d − 1 such that

(2 dj
2 ψ(i)(2jx− k), j ∈ Z, k ∈ Zd, i = 1...2d − 1) is an

orthonormal basis of L2(Rd).
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(2 dj
2 ψ(i)(2jx− k), j ∈ Z, k ∈ Zd, i = 1...2d − 1) is an

orthonormal basis of L2(Rd).
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Wavelet basis

a setting of discrete wavelets
2d − 1 wavelets ψ(i), i = 1...2d − 1 such that

(2 dj
2 ψ(i)(2jx− k), j ∈ Z, k ∈ Zd, i = 1...2d − 1) is an

orthonormal basis of L2(Rd).
compactly supported.
To simplify here d = 1

we write λ = (j, k) = [ k2j ,
k+1
2j ] which yields ψλ = ψ(2j .− k)
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that
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2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m
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Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m

with εi = ±1 and (i = 2−i and (′i = 2−αi
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m

with εi = ±1 and (i = 2−i and (′i = 2−αi

Remarks: let cλ = 2j
∫
f(x)ψλ(x)dx with λ = (j, k)
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m

with εi = ±1 and (i = 2−i and (′i = 2−αi

Remarks: let cλ = 2j
∫
f(x)ψλ(x)dx with λ = (j, k)

If αβm < j < αβ(m+ 1) for all k cλ = 0
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m

with εi = ±1 and (i = 2−i and (′i = 2−αi

Remarks: let cλ = 2j
∫
f(x)ψλ(x)dx with λ = (j, k)

If αβm < j < αβ(m+ 1) for all k cλ = 0

If j = αβm then at most 2m coefficients don’t vanish on a total
amount of 2αβm possible coefficients.
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The model of Jaffard (1992)

Indexed by two parameters α ≥ 1 and β ≥ 1,
f(x) =

∑
λ∈Λ(α,β)

2−jγψλ with Λ(α, β) =
⋃

m≥1
Λm(α, β) such that

j = αβm
k
2j = ε1(1 + ...+ εm−1(m−1 + εm(′m

with εi = ±1 and (i = 2−i and (′i = 2−αi

Remarks: let cλ = 2j
∫
f(x)ψλ(x)dx with λ = (j, k)

If αβm < j < αβ(m+ 1) for all k cλ = 0

If j = αβm then at most 2m coefficients don’t vanish on a total
amount of 2αβm possible coefficients.

α = 1 in the following and β integer.
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Wavelets and Hölder exponent

Let x0 ∈ R and f ∈ L∞
loc(R).
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Wavelets and Hölder exponent

Let x0 ∈ R and f ∈ L∞
loc(R).

(Jaffard 2004) Suppose f ∈ Cε(R). Let dj(x0) = sup
λ′⊂3.λj(x0)

|c′λ|

then hf (x0) = lim inf
j→∞

log(dj(x0))
log(2−j)
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λ′⊂3.λj(x0)

|c′λ|
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Numerical results

(Abry-Lashermes, 2005)
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Wavelets and Hölder exponent

Let x0 ∈ Rd and f ∈ L∞
loc(Rd).

(Jaffard 2004) Suppose f ∈ Cε(Rd). Let dj(x0) = sup
λ′⊂3.λj(x0)

|c′λ|

then hf (x0) = lim inf
j→∞

log(dj(x0))
log(2−j)
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Wavelets and p-exponent

Let x0 ∈ R and f ∈ L∞
loc(R).

(Jaffard-M. 2004) Suppose f ∈ Bδ,p
p

Let dj,p(x0) =
∑

λ′⊂3λj(x0)

2−dj′(j′)−3|cλ′ |p. then

up
f (x0) = lim inf

j→∞
log(dj,p(x0))

log(2−j)
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Wavelets and p-exponent

Let x0 ∈ R and f ∈ L∞
loc(R).

(Jaffard-M. 2004) Suppose f ∈ Bδ,p
p

Let dj,p(x0) =
∑

λ′⊂3λj(x0)

2−dj′(j′)−3|cλ′ |p. then

up
f (x0) = lim inf

j→∞
log(dj,p(x0))

log(2−j)

(Jaffard 2004) Let Sf (j, x0)(x) =
√ ∑

λ′⊂3λj(x0)

C2
λ χλ(x) then

up
f (x0) = lim inf

j→∞
log(‖Sf (j,x0)‖p)

log(2−j) − d/p
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Approximation rate by dyadics

Let x0 ∈ R and f ∈ L∞
loc(R).

r(x0) = lim supj→∞
log(|Kj(x0)2

−j−x0|)
log(2−j) where

Kj(x0) = argmink odd(|x0 − k2−j |).
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Approximation rate by dyadics

Let x0 ∈ R and f ∈ L∞
loc(R).

r(x0) = lim supj→∞
log(|Kj(x0)2

−j−x0|)
log(2−j) where

Kj(x0) = argmink odd(|x0 − k2−j |).
Consequences:

Study of an example of multifractal and "sparse" signal – p.20/35



Approximation rate by dyadics

Let x0 ∈ R and f ∈ L∞
loc(R).

r(x0) = lim supj→∞
log(|Kj(x0)2

−j−x0|)
log(2−j) where

Kj(x0) = argmink odd(|x0 − k2−j |).
Consequences:

→ r(x0) ≥ 1.

Study of an example of multifractal and "sparse" signal – p.20/35



Approximation rate by dyadics

Let x0 ∈ R and f ∈ L∞
loc(R).

r(x0) = lim supj→∞
log(|Kj(x0)2

−j−x0|)
log(2−j) where

Kj(x0) = argmink odd(|x0 − k2−j |).
Consequences:

→ r(x0) ≥ 1.
→ |Kj(x0)2−j − x0| ∼ 2−jr(x0).
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Approximation rate by dyadics

Let x0 ∈ R and f ∈ L∞
loc(R).

r(x0) = lim supj→∞
log(|Kj(x0)2

−j−x0|)
log(2−j) where

Kj(x0) = argmink odd(|x0 − k2−j |).
Consequences:

→ r(x0) ≥ 1.
→ |Kj(x0)2−j − x0| ∼ 2−jr(x0).

The dimension of Er = {x0 : r(x0) = r} is exactly 1
r
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Spectrum of singularities

Theorem 1 Let α, β and γ, with α = 1 and β ≥ 1 an integer and γ > 0

a non integer. Let p ≥ 1.

Suppose r(x0) < β then hf (x0) =
βγ

r(x0)
and uf

p(x0) =
β(γ+ 1

p )

r(x0)
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Spectrum of singularities

Theorem 1 Let α, β and γ, with α = 1 and β ≥ 1 an integer and γ > 0

a non integer. Let p ≥ 1.
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r(x0)
and uf

p(x0) =
β(γ+ 1

p )

r(x0)

Suppose r(x0) ≥ β then hf (x0) = βγ and uf
p(x0) = β(γ + 1

p ).
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Spectrum of singularities

Theorem 1 Let α, β and γ, with α = 1 and β ≥ 1 an integer and γ > 0

a non integer. Let p ≥ 1.

Suppose r(x0) < β then hf (x0) =
βγ

r(x0)
and uf

p(x0) =
β(γ+ 1

p )

r(x0)

Suppose r(x0) ≥ β then hf (x0) = βγ and uf
p(x0) = β(γ + 1

p ).

f satisfies a multifractal type formula and its spectrum of
singularities is df (h) =

h 1I[γ,γβ](h)
βγ .
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Spectrum of singularities

Theorem 1 Let α, β and γ, with α = 1 and β ≥ 1 an integer and γ > 0

a non integer. Let p ≥ 1.

Suppose r(x0) < β then hf (x0) =
βγ

r(x0)
and uf

p(x0) =
β(γ+ 1

p )

r(x0)

Suppose r(x0) ≥ β then hf (x0) = βγ and uf
p(x0) = β(γ + 1

p ).

f satisfies a multifractal type formula and its spectrum of
singularities is df (h) =

h 1I[γ,γβ](h)
βγ .

f satisfies a multifractal type formula for the p exponent and its

spectrum of singularities is dpf (u) =
u 1I

[γ+ 1
p
,(γ+ 1

p
)β]

(u)

β(γ+ 1
p )

.
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Spectrum of singularities

Theorem 1 Let α, β and γ, with α = 1 and β ≥ 1 an integer and γ > 0

a non integer. Let p ≥ 1.

Suppose r(x0) < β then hf (x0) =
βγ

r(x0)
and uf

p(x0) =
β(γ+ 1

p )

r(x0)

Suppose r(x0) ≥ β then hf (x0) = βγ and uf
p(x0) = β(γ + 1

p ).

f satisfies a multifractal type formula and its spectrum of
singularities is df (h) =

h 1I[γ,γβ](h)
βγ .

f satisfies a multifractal type formula for the p exponent and its

spectrum of singularities is dpf (u) =
u 1I

[γ+ 1
p
,(γ+ 1

p
)β]

(u)

β(γ+ 1
p )

.

→ related to oscillation spaces
f ∈ Os

q ⇔ 2sq−1
∑
λ∈Λj

dqλ < ∞ with dλ = sup
λ′⊂λ

|cλ′ |
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Multifractal formalism

Let Sf (q, j) = 2−dj
∑

λ∈Λj
|dλ|q with dλ = sup

λ′⊂λ
|cλ′ |
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Multifractal formalism

Let Sf (q, j) = 2−dj
∑

λ∈Λj
|dλ|q with dλ = sup

λ′⊂λ
|cλ′ |

let compute Sf (q, j) as j → +∞ with the help of the scaling
function f defined by

ηf (q) = lim inf
j→+∞

(
log (Sf (q, j))

log(2−j)

)
; (3)
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Multifractal formalism

Let Sf (q, j) = 2−dj
∑

λ∈Λj
|dλ|q with dλ = sup

λ′⊂λ
|cλ′ |

let compute Sf (q, j) as j → +∞ with the help of the scaling
function f defined by

ηf (q) = lim inf
j→+∞

(
log (Sf (q, j))

log(2−j)

)
; (3)

If f ∈ Cδ(Rn) the multifractal formalism claims
df (u) = infq(uq − ηf (q) + d)
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Multifractal formalism

Let the p-leader: dλ,p =
(∑

λ′⊂λ 2
−d(j′−j)|cλ′ |p

)1/p
.

define Sf (p, q, j) = 2−dj
∑

λ∈Λj
|dλ,p|q
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Multifractal formalism

Let the p-leader: dλ,p =
(∑

λ′⊂λ 2
−d(j′−j)|cλ′ |p

)1/p
.

define Sf (p, q, j) = 2−dj
∑

λ∈Λj
|dλ,p|q

we estimate the decreasing of Sf (p, q, j) when j → +∞ with the help
of the p-scaling function of f defined by

ηf (p, q) = lim inf
j→+∞

(
log (Sf (p, q, j))

log(2−j)

)
; (4)
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Multifractal formalism

Let the p-leader: dλ,p =
(∑

λ′⊂λ 2
−d(j′−j)|cλ′ |p

)1/p
.

define Sf (p, q, j) = 2−dj
∑

λ∈Λj
|dλ,p|q

we estimate the decreasing of Sf (p, q, j) when j → +∞ with the help
of the p-scaling function of f defined by

ηf (p, q) = lim inf
j→+∞

(
log (Sf (p, q, j))

log(2−j)

)
; (4)

the multifractal formalism for the p-exponent claims:

dpf (u) = infq(uq − ηf (p, q) + d),
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Notion of dimension:

Example: Koch’s snowflake
Construction:
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Notion of dimension:

Example: Koch’s snowflake
Construction:
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Notion of dimension:

Example: Koch’s snowflake
Construction:
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Notion of dimension:

Example: Koch’s snowflake
Construction:
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Notion of dimension:

Covering by 4 segments of length 1/3
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Notion of dimension:

Covering by 4 segments of length 1/3

The length of the covering is 4
3
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Notion of dimension:

Covering by 42 segments of length 1/32

The length of the covering is 42

32
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Notion of dimension:

Covering by 43 segments of length 1/33

The length of the covering is 43

33 .
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Notion of dimension:

Covering by 43 segments of length 1/33

The length of the covering is 43

33 .
At step n the length of the covering is 4n

3n .
And so the total length is not finite.
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Notion of dimension:

Covering by 4 square of size 1/3

The area of the covering is 4
32
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Notion of dimension :

Covering by 16 square of size 1/32

The area of the covering is 16
34

Study of an example of multifractal and "sparse" signal – p.32/35



Notion of dimension :

Covering by 16 square of size 1/32

The area of the covering is 16
34

At step n the area of the covering is 4n

32n .
And so the total area is zero.
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Hausdorff dimension:

Let d such that 0 < lim
n→+∞

4n

3dn < +∞.
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Hausdorff dimension:

Let d such that 0 < lim
n→+∞

4n

3dn < +∞.

d = ln 4
ln 3 is the dimension of the flochon.

The dimension gives the size of the “right” covering.
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Hausdorff dimension:

Let d such that 0 < lim
n→+∞

4n

3dn < +∞.

d = ln 4
ln 3 is the dimension of the flochon.

The dimension gives the size of the “right” covering.
Hausdorff measure
Definition 1 Let F ⊂ Rd and s ≥ 0.
∀δ > 0, we denote

Hs
δ(F ) = inf

{ ∞∑

i=1

|Ui|s : F ⊂
⋃

i

Ui, diam(Ui) ≤ δ

}

where diam(Ui) means the diameter of Ui.
The s-dimensional Hausdorff measure of F is Hs(F ) = lim

δ→0
Hs
δ(F ) .
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Dimension

Hs(F ) is a decreasing function of s.
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Dimension

Hs(F ) is a decreasing function of s.
One can easily check that if t > s and Hs(F ) < ∞ then
Ht(F ) = 0.
→ there exists a critical value of s denoted D such that
Hs(F ) = ∞ if s > D and Hs(F ) = 0 if s < D.
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Dimension

Hs(F ) is a decreasing function of s.
One can easily check that if t > s and Hs(F ) < ∞ then
Ht(F ) = 0.
→ there exists a critical value of s denoted D such that
Hs(F ) = ∞ if s > D and Hs(F ) = 0 if s < D.

mnHs(F )

mnD

mn+∞

mns
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Definition of the Hausdorff dimension
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Definition of the Hausdorff dimension

Definition 2 Under the previous assumptions, the Hausdorff
dimension of F is

D = inf{s,Hs(F ) = 0} = sup{s,Hs(F ) = +∞}.
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Definition of the Hausdorff dimension

Definition 2 Under the previous assumptions, the Hausdorff
dimension of F is

D = inf{s,Hs(F ) = 0} = sup{s,Hs(F ) = +∞}.

Very difficult to compute numerically for one set.
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Definition of the Hausdorff dimension

Definition 2 Under the previous assumptions, the Hausdorff
dimension of F is

D = inf{s,Hs(F ) = 0} = sup{s,Hs(F ) = +∞}.

Very difficult to compute numerically for one set.
Impossible to compute when you have an infinity of sets !
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