Study of an example of multifractal and "sparse" signal

C. Coiffard, C. Melot, T. Willer
LATP, Aix-Marseille Université, Ecole Centrale Marseille, France.

Introduction

- Initial motivation for multifractal analysis:

Introduction

- Initial motivation for multifractal analysis:
\rightarrow study of the velocity signal of a turbulent fluid

Introduction

- Initial motivation for multifractal analysis:
\rightarrow study of the velocity signal of a turbulent fluid

Required tools

- a pointwise regularity criterium

Required tools

- a pointwise regularity criterium
\rightarrow initially the pointwise Hölder exponent

Required tools

- a pointwise regularity criterium
\rightarrow initially the pointwise Hölder exponent
- a numerical method to compute the "size" of the sets of points with a given pointwise regularity

Required tools

- a pointwise regularity criterium
\rightarrow initially the pointwise Hölder exponent
- a numerical method to compute the "size" of the sets of points with a given pointwise regularity
\rightarrow Frisch-Parisi formula (1985), Wavelet Transform Maxima Method (Arnéodo and all, 1989), Wavelet-leaders method (Jaffard and all 2002...).

Pointwise Hölder exponent:

Pointwise Hölder exponent:

Definition: Let $x_{0} \in \mathbb{R}^{d}$ and $\alpha \geq 0$.
A locally bounded function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to $C^{\alpha}\left(x_{0}\right)$ if there exists $C>0$ and a polynomial $P_{x_{0}}$ with $\operatorname{deg}(P) \leq[\alpha]$ and such that on a neighborhood of x_{0},

$$
\begin{equation*}
\left|f(x)-P_{x_{0}}(x)\right| \leq C\left|x-x_{0}\right|^{\alpha} . \tag{1}
\end{equation*}
$$

Pointwise Hölder exponent:

Definition: Let $x_{0} \in \mathbb{R}^{d}$ and $\alpha \geq 0$.
A locally bounded function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to $C^{\alpha}\left(x_{0}\right)$ if there exists $C>0$ and a polynomial $P_{x_{0}}$ with $\operatorname{deg}(P) \leq[\alpha]$ and such that on a neighborhood of x_{0},

$$
\begin{equation*}
\left|f(x)-P_{x_{0}}(x)\right| \leq C\left|x-x_{0}\right|^{\alpha} . \tag{1}
\end{equation*}
$$

\rightarrow The pointwise Hölder exponent of f at x_{0} is
$h_{f}\left(x_{0}\right)=\sup \left\{\alpha: f \in C^{\alpha}\left(x_{0}\right)\right\}$.

Examples:

Takagi-Knopp function

Examples:

Takagi-Knopp function

$h_{f}\left(x_{0}\right)=h_{0}$ at each x_{0}

Examples:

Fractional brownian motion

Examples:

Fractional brownian motion

with probability 1 each sample path satisfies $h_{f}\left(x_{0}\right)=H$ at each x_{0}

Examples:

Function whose regularity changes from point to point

Examples:

Function whose regularity changes from point to point

$h_{f}\left(x_{0}\right)=x_{0}$ at each x_{0}

Frisch-Parisi solution (1985)

Heuristic formula to compute $d(h)$.

Frisch-Parisi solution (1985)

Heuristic formula to compute $d(h)$.
One first evaluates the "structure function" with f in L^{q} :

$$
S_{f}^{q}(y)=\int_{\mathbb{R}^{d}}|f(x+y)-f(x)|^{q} d x
$$

When y gets to 0 , we have $S_{q}(y) \sim|y|^{\zeta_{f}(q)}$, the claim is

$$
d_{f}(h)=\inf _{q}\left(q h-\zeta_{f}(q)+d\right)
$$

Frisch-Parisi solution (1985)

Heuristic formula to compute $d(h)$.
One first evaluates the "structure function" with f in L^{q} :

$$
S_{f}^{q}(y)=\int_{\mathbb{R}^{d}}|f(x+y)-f(x)|^{q} d x
$$

When y gets to 0 , we have $S_{q}(y) \sim|y|^{\zeta_{f}(q)}$, the claim is

$$
d_{f}(h)=\inf _{q}\left(q h-\zeta_{f}(q)+d\right)
$$

\rightarrow can be viewed with the help of functional spaces

Frisch-Parisi solution (1985)

Heuristic formula to compute $d(h)$.
One first evaluates the "structure function" with f in L^{q} :

$$
S_{f}^{q}(y)=\int_{\mathbb{R}^{d}}|f(x+y)-f(x)|^{q} d x
$$

When y gets to 0 , we have $S_{q}(y) \sim|y|^{\zeta_{f}(q)}$,
the claim is

$$
d_{f}(h)=\inf _{q}\left(q h-\zeta_{f}(q)+d\right)
$$

\rightarrow can be viewed with the help of functional spaces
\rightarrow still difficult to compute

Frisch-Parisi solution (1985)

Heuristic formula to compute $d(h)$.
One first evaluates the "structure function" with f in L^{q} :

$$
S_{f}^{q}(y)=\int_{\mathbb{R}^{d}}|f(x+y)-f(x)|^{q} d x
$$

When y gets to 0 , we have $S_{q}(y) \sim|y|^{\zeta_{f}(q)}$, the claim is

$$
d_{f}(h)=\inf _{q}\left(q h-\zeta_{f}(q)+d\right)
$$

\rightarrow can be viewed with the help of functional spaces
\rightarrow still difficult to compute
\rightarrow One can find counterexamples.

Exploring pointwise regularity

The " p-exponent"
Definition:(Calderon and Zygmund 1961)
Let $p \in[1, \infty]$ and u such that $u \geq-\frac{d}{p}$. Let f be a function in $L_{l o c}^{p}$. f belongs to $T_{u}^{p}\left(x_{0}\right)$

Exploring pointwise regularity

The " p-exponent"
Definition:(Calderon and Zygmund 1961)
Let $p \in[1, \infty]$ and u such that $u \geq-\frac{d}{p}$. Let f be a function in $L_{l o c}^{p}$. f belongs to $T_{u}^{p}\left(x_{0}\right)$ if there exists $R>0, P$ a polynomial such that $\operatorname{deg}(P) \leq u$, and $C>0$ such that

$$
\begin{equation*}
\forall \rho \leq R:\left(\frac{1}{\rho^{d}} \int_{\left|x-x_{0}\right| \leq \rho}|f(x)-P(x)|^{p} d x\right)^{\frac{1}{p}} \leq C \rho^{u} . \tag{2}
\end{equation*}
$$

Exploring pointwise regularity

The " p-exponent"
Definition:(Calderon and Zygmund 1961)
Let $p \in[1, \infty]$ and u such that $u \geq-\frac{d}{p}$. Let f be a function in $L_{l o c}^{p}$. f belongs to $T_{u}^{p}\left(x_{0}\right)$ if there exists $R>0, P$ a polynomial such that $\operatorname{deg}(P) \leq u$, and $C>0$ such that

$$
\begin{equation*}
\forall \rho \leq R:\left(\frac{1}{\rho^{d}} \int_{\left|x-x_{0}\right| \leq \rho}|f(x)-P(x)|^{p} d x\right)^{\frac{1}{p}} \leq C \rho^{u} . \tag{2}
\end{equation*}
$$

\rightarrow the p-exponent of f at x_{0} is $u_{f}^{p}\left(x_{0}\right)=\sup \left\{u: f \in T_{u}^{p}\left(x_{0}\right)\right\}$

Properties:

- if $p<q$ then $u_{f}^{p}\left(x_{0}\right) \geq u_{f}^{q}\left(x_{0}\right)$.

Properties:

- if $p<q$ then $u_{f}^{p}\left(x_{0}\right) \geq u_{f}^{q}\left(x_{0}\right)$.
- if $f \in C^{h}\left(x_{0}\right)$ then $u_{f}^{p}\left(x_{0}\right) \geq h$.

Properties:

- if $p<q$ then $u_{f}^{p}\left(x_{0}\right) \geq u_{f}^{q}\left(x_{0}\right)$.
- if $f \in C^{h}\left(x_{0}\right)$ then $u_{f}^{p}\left(x_{0}\right) \geq h$.
- Less straightforward: Bessel potential of order $\alpha \mathcal{J}^{\alpha}$ (fractional integration operator) maps continuously $T_{u}^{p}\left(x_{0}\right)$ to $T_{u+\alpha}^{p}\left(x_{0}\right)$.

Example:

$$
\begin{aligned}
& D_{j}=\left[1 / 2^{j}-1 / 2^{3 j}, 1 / 2^{j}\right], \text { where } j \geq 0 \\
& g(x)=|x|^{\alpha} \sum_{j=1}^{\infty} I_{D_{j}}(x) \\
& h_{g}(0)=\alpha<u_{g}^{p}(0)=\alpha+1 / p \text { for any } p \geq 1
\end{aligned}
$$

A "p-exponent multifractal" signal

- Goal: study of a signal which is going to be multifractal

A " p-exponent multifractal" signal

- Goal: study of a signal which is going to be multifractal
\rightarrow from the point of view of the Hölder exponent

A " p-exponent multifractal" signal

- Goal: study of a signal which is going to be multifractal
\rightarrow from the point of view of the Hölder exponent
\rightarrow as well as from the point of view of the p-exponent

A " p-exponent multifractal" signal

- Goal: study of a signal which is going to be multifractal
\rightarrow from the point of view of the Hölder exponent
\rightarrow as well as from the point of view of the p-exponent
- Model: developped by Jaffard in the early 90's with the help of wavelet basis.

Wavelet basis

- a setting of discrete wavelets

Wavelet basis

- a setting of discrete wavelets
$2^{d}-1$ wavelets $\psi^{(i)}, i=1 \ldots 2^{d}-1$ such that

Wavelet basis

- a setting of discrete wavelets
$2^{d}-1$ wavelets $\psi^{(i)}, i=1 \ldots 2^{d}-1$ such that
- $\left(2^{\frac{d j}{2}} \psi^{(i)}\left(2^{j} x-k\right), j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, i=1 \ldots 2^{d}-1\right)$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.

Wavelet basis

- a setting of discrete wavelets
$2^{d}-1$ wavelets $\psi^{(i)}, i=1 \ldots 2^{d}-1$ such that
- $\left(2^{\frac{d j}{2}} \psi^{(i)}\left(2^{j} x-k\right), j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, i=1 \ldots 2^{d}-1\right)$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.
- compactly supported.

Wavelet basis

- a setting of discrete wavelets
$2^{d}-1$ wavelets $\psi^{(i)}, i=1 \ldots 2^{d}-1$ such that
- $\left(2^{\frac{d j}{2}} \psi^{(i)}\left(2^{j} x-k\right), j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, i=1 \ldots 2^{d}-1\right)$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.
- compactly supported.
- To simplify here $d=1$

Wavelet basis

- a setting of discrete wavelets
$2^{d}-1$ wavelets $\psi^{(i)}, i=1 \ldots 2^{d}-1$ such that
- $\left(2^{\frac{d j}{2}} \psi^{(i)}\left(2^{j} x-k\right), j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, i=1 \ldots 2^{d}-1\right)$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.
- compactly supported.
- To simplify here $d=1$
- we write $\lambda=(j, k)=\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right]$ which yields $\psi_{\lambda}=\psi\left(2^{j} .-k\right)$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that - $j=\alpha \beta m$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$
- with $\epsilon_{i}= \pm 1$ and $\ell_{i}=2^{-i}$ and $\ell_{i}^{\prime}=2^{-\alpha i}$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$
- with $\epsilon_{i}= \pm 1$ and $\ell_{i}=2^{-i}$ and $\ell_{i}^{\prime}=2^{-\alpha i}$
- Remarks: let $c_{\lambda}=2^{j} \int f(x) \psi_{\lambda}(x) d x$ with $\lambda=(j, k)$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$
- with $\epsilon_{i}= \pm 1$ and $\ell_{i}=2^{-i}$ and $\ell_{i}^{\prime}=2^{-\alpha i}$
- Remarks: let $c_{\lambda}=2^{j} \int f(x) \psi_{\lambda}(x) d x$ with $\lambda=(j, k)$
- If $\alpha \beta m<j<\alpha \beta(m+1)$ for all $k c_{\lambda}=0$

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$
- with $\epsilon_{i}= \pm 1$ and $\ell_{i}=2^{-i}$ and $\ell_{i}^{\prime}=2^{-\alpha i}$
- Remarks: let $c_{\lambda}=2^{j} \int f(x) \psi_{\lambda}(x) d x$ with $\lambda=(j, k)$
- If $\alpha \beta m<j<\alpha \beta(m+1)$ for all $k c_{\lambda}=0$
- If $j=\alpha \beta m$ then at most 2^{m} coefficients don't vanish on a total amount of $2^{\alpha \beta m}$ possible coefficients.

The model of Jaffard (1992)

- Indexed by two parameters $\alpha \geq 1$ and $\beta \geq 1$,
- $f(x)=\sum_{\lambda \in \Lambda(\alpha, \beta)} 2^{-j \gamma} \psi_{\lambda}$ with $\Lambda(\alpha, \beta)=\bigcup_{m \geq 1} \Lambda_{m}(\alpha, \beta)$ such that
- $j=\alpha \beta m$
- $\frac{k}{2^{j}}=\epsilon_{1} \ell_{1}+\ldots+\epsilon_{m-1} \ell_{m-1}+\epsilon_{m} \ell_{m}^{\prime}$
- with $\epsilon_{i}= \pm 1$ and $\ell_{i}=2^{-i}$ and $\ell_{i}^{\prime}=2^{-\alpha i}$
- Remarks: let $c_{\lambda}=2^{j} \int f(x) \psi_{\lambda}(x) d x$ with $\lambda=(j, k)$
- If $\alpha \beta m<j<\alpha \beta(m+1)$ for all $k c_{\lambda}=0$
- If $j=\alpha \beta m$ then at most 2^{m} coefficients don't vanish on a total amount of $2^{\alpha \beta m}$ possible coefficients.
- $\alpha=1$ in the following and β integer.

Wavelets and Hölder exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{\text {loc }}^{\infty}(\mathbb{R})$.

Wavelets and Hölder exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_{j}\left(x_{0}\right)=\sup _{\lambda^{\prime} \subset 3 . \lambda_{j}\left(x_{0}\right)}\left|c_{\lambda}^{\prime}\right|$ then $h_{f}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}$

Wavelets and Hölder exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{\text {loc }}^{\infty}(\mathbb{R})$.

- (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_{j}\left(x_{0}\right)=\sup _{\lambda^{\prime} \subset 3 \cdot \lambda_{j}\left(x_{0}\right)}\left|c_{\lambda}^{\prime}\right|$ then $h_{f}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}$

Wavelets and Hölder exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- (Jaffard 2004) Suppose $f \in C^{\varepsilon}(\mathbb{R})$. Let $d_{j}\left(x_{0}\right)=\sup _{\lambda^{\prime} \subset 3 . \lambda_{j}\left(x_{0}\right)}\left|c_{\lambda}^{\prime}\right|$ then $h_{f}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}$

Numerical results

(Abry-Lashermes, 2005)

Wavelets and Hölder exponent

Let $x_{0} \in \mathbb{R}^{d}$ and $f \in L_{l o c}^{\infty}\left(\mathbb{R}^{d}\right)$.

- (Jaffard 2004) Suppose $f \in C^{\varepsilon}\left(\mathbb{R}^{d}\right)$. Let $d_{j}\left(x_{0}\right)=\sup _{\lambda^{\prime} \subset 3 . \lambda_{j}\left(x_{0}\right)}\left|c_{\lambda}^{\prime}\right|$ then $h_{f}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}$

Wavelets and p-exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{\text {loc }}^{\infty}(\mathbb{R})$.

- (Jaffard-M. 2004) Suppose $f \in B_{p}^{\delta, p}$

$$
\begin{aligned}
& \text { Let } d_{j, p}\left(x_{0}\right)=\sum_{\lambda^{\prime} \subset 3 \lambda_{j}\left(x_{0}\right)} 2^{-d j^{\prime}}\left(j^{\prime}\right)^{-3}\left|c_{\lambda^{\prime}}\right|^{p} \text {. then } \\
& u_{f}^{p}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j, p}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}
\end{aligned}
$$

Wavelets and p-exponent

Let $x_{0} \in \mathbb{R}$ and $f \in L_{\text {loc }}^{\infty}(\mathbb{R})$.

- (Jaffard-M. 2004) Suppose $f \in B_{p}^{\delta, p}$

$$
\begin{aligned}
& \text { Let } d_{j, p}\left(x_{0}\right)=\sum_{\lambda^{\prime} \subset 3 \lambda_{j}\left(x_{0}\right)} 2^{-d j^{\prime}}\left(j^{\prime}\right)^{-3}\left|c_{\lambda^{\prime}}\right|^{p} \text {. then } \\
& u_{f}^{p}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(d_{j, p}\left(x_{0}\right)\right)}{\log \left(2^{-j}\right)}
\end{aligned}
$$

- (Jaffard 2004) Let $S_{f}\left(j, x_{0}\right)(x)=\sqrt{\sum_{\lambda^{\prime} \subset 3 \lambda_{j}\left(x_{0}\right)} C_{\lambda}^{2} \chi_{\lambda}(x)}$ then

$$
u_{f}^{p}\left(x_{0}\right)=\liminf _{j \rightarrow \infty} \frac{\log \left(\left\|S_{f}\left(j, x_{0}\right)\right\|_{p}\right)}{\log \left(2^{-j}\right)}-d / p
$$

Approximation rate by dyadics

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- $r\left(x_{0}\right)=\lim \sup _{j \rightarrow \infty} \frac{\log \left(\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right|\right)}{\log \left(2^{-j}\right)}$ where
$K_{j}\left(x_{0}\right)=\operatorname{argmin}_{k \text { odd }}\left(\left|x_{0}-k 2^{-j}\right|\right)$.

Approximation rate by dyadics

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- $r\left(x_{0}\right)=\lim \sup _{j \rightarrow \infty} \frac{\log \left(\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right|\right)}{\log \left(2^{-j}\right)}$ where $K_{j}\left(x_{0}\right)=\operatorname{argmin}_{k \text { odd }}\left(\left|x_{0}-k 2^{-j}\right|\right)$.
- Consequences:

Approximation rate by dyadics

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- $r\left(x_{0}\right)=\lim \sup _{j \rightarrow \infty} \frac{\log \left(\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right|\right)}{\log \left(2^{-j}\right)}$ where $K_{j}\left(x_{0}\right)=\operatorname{argmin}_{k \text { odd }}\left(\left|x_{0}-k 2^{-j}\right|\right)$.
- Consequences:
$\rightarrow r\left(x_{0}\right) \geq 1$.

Approximation rate by dyadics

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- $r\left(x_{0}\right)=\lim \sup _{j \rightarrow \infty} \frac{\log \left(\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right|\right)}{\log \left(2^{-j}\right)}$ where $K_{j}\left(x_{0}\right)=\operatorname{argmin}_{k \text { odd }}\left(\left|x_{0}-k 2^{-j}\right|\right)$.
- Consequences:
$\rightarrow r\left(x_{0}\right) \geq 1$.
$\rightarrow\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right| \sim 2^{-j r\left(x_{0}\right)}$.

Approximation rate by dyadics

Let $x_{0} \in \mathbb{R}$ and $f \in L_{l o c}^{\infty}(\mathbb{R})$.

- $r\left(x_{0}\right)=\lim \sup _{j \rightarrow \infty} \frac{\log \left(\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right|\right)}{\log \left(2^{-j}\right)}$ where
$K_{j}\left(x_{0}\right)=\operatorname{argmin}_{k \text { odd }}\left(\left|x_{0}-k 2^{-j}\right|\right)$.
- Consequences:
$\rightarrow r\left(x_{0}\right) \geq 1$.
$\rightarrow\left|K_{j}\left(x_{0}\right) 2^{-j}-x_{0}\right| \sim 2^{-j r\left(x_{0}\right)}$.
- The dimension of $E_{r}=\left\{x_{0}: r\left(x_{0}\right)=r\right\}$ is exactly $\frac{1}{r}$

Spectrum of singularities

Theorem 1 Let α, β and γ, with $\alpha=1$ and $\beta \geq 1$ an integer and $\gamma>0$ a non integer. Let $p \geq 1$.

- Suppose $r\left(x_{0}\right)<\beta$ then $h_{f}\left(x_{0}\right)=\frac{\beta \gamma}{r\left(x_{0}\right)}$ and $u_{p}^{f}\left(x_{0}\right)=\frac{\beta\left(\gamma+\frac{1}{p}\right)}{r\left(x_{0}\right)}$

Spectrum of singularities

Theorem 1 Let α, β and γ, with $\alpha=1$ and $\beta \geq 1$ an integer and $\gamma>0$ a non integer. Let $p \geq 1$.

- Suppose $r\left(x_{0}\right)<\beta$ then $h_{f}\left(x_{0}\right)=\frac{\beta \gamma}{r\left(x_{0}\right)}$ and $u_{p}^{f}\left(x_{0}\right)=\frac{\beta\left(\gamma+\frac{1}{p}\right)}{r\left(x_{0}\right)}$
- Suppose $r\left(x_{0}\right) \geq \beta$ then $h_{f}\left(x_{0}\right)=\beta \gamma$ and $u_{p}^{f}\left(x_{0}\right)=\beta\left(\gamma+\frac{1}{p}\right)$.

Spectrum of singularities

Theorem 1 Let α, β and γ, with $\alpha=1$ and $\beta \geq 1$ an integer and $\gamma>0$ a non integer. Let $p \geq 1$.

- Suppose $r\left(x_{0}\right)<\beta$ then $h_{f}\left(x_{0}\right)=\frac{\beta \gamma}{r\left(x_{0}\right)}$ and $u_{p}^{f}\left(x_{0}\right)=\frac{\beta\left(\gamma+\frac{1}{p}\right)}{r\left(x_{0}\right)}$
- Suppose $r\left(x_{0}\right) \geq \beta$ then $h_{f}\left(x_{0}\right)=\beta \gamma$ and $u_{p}^{f}\left(x_{0}\right)=\beta\left(\gamma+\frac{1}{p}\right)$.
- f satisfies a multifractal type formula and its spectrum of singularities is $d_{f}(h)=\frac{h \mathbf{1}_{[\gamma, \gamma \beta]}(h)}{\beta \gamma}$.

Spectrum of singularities

Theorem 1 Let α, β and γ, with $\alpha=1$ and $\beta \geq 1$ an integer and $\gamma>0$ a non integer. Let $p \geq 1$.

- Suppose $r\left(x_{0}\right)<\beta$ then $h_{f}\left(x_{0}\right)=\frac{\beta \gamma}{r\left(x_{0}\right)}$ and $u_{p}^{f}\left(x_{0}\right)=\frac{\beta\left(\gamma+\frac{1}{p}\right)}{r\left(x_{0}\right)}$
- Suppose $r\left(x_{0}\right) \geq \beta$ then $h_{f}\left(x_{0}\right)=\beta \gamma$ and $u_{p}^{f}\left(x_{0}\right)=\beta\left(\gamma+\frac{1}{p}\right)$.
- f satisfies a multifractal type formula and its spectrum of singularities is $d_{f}(h)=\frac{h \mathbf{1}_{[\gamma, \gamma]\}}(h)}{\beta \gamma}$.
- f satisfies a multifractal type formula for the p exponent and its spectrum of singularities is $d_{f}^{p}(u)=\frac{{ }_{u} \mathbb{1}_{\left[\gamma+\frac{1}{p},\left(\gamma+\frac{1}{p}\right) \beta\right]}(u)}{\beta\left(\gamma+\frac{p}{p}\right)}$.

Spectrum of singularities

Theorem 1 Let α, β and γ, with $\alpha=1$ and $\beta \geq 1$ an integer and $\gamma>0$ a non integer. Let $p \geq 1$.

- Suppose $r\left(x_{0}\right)<\beta$ then $h_{f}\left(x_{0}\right)=\frac{\beta \gamma}{r\left(x_{0}\right)}$ and $u_{p}^{f}\left(x_{0}\right)=\frac{\beta\left(\gamma+\frac{1}{p}\right)}{r\left(x_{0}\right)}$
- Suppose $r\left(x_{0}\right) \geq \beta$ then $h_{f}\left(x_{0}\right)=\beta \gamma$ and $u_{p}^{f}\left(x_{0}\right)=\beta\left(\gamma+\frac{1}{p}\right)$.
- f satisfies a multifractal type formula and its spectrum of singularities is $d_{f}(h)=\frac{h \mathbf{1}_{[\gamma, \gamma)]}(h)}{\beta \gamma}$.
- f satisfies a multifractal type formula for the p exponent and its spectrum of singularities is $d_{f}^{p}(u)=\frac{u \boldsymbol{1}_{\left[\gamma+\frac{1}{p},\left(\gamma+\frac{1}{p}\right), \beta\right]}(u)}{\beta\left(\gamma+\frac{1}{p}\right)}$.
\rightarrow related to oscillation spaces

$$
f \in \mathcal{O}_{q}^{s} \Leftrightarrow 2^{s q-1} \sum_{\lambda \in \Lambda_{j}} d_{\lambda}^{q}<\infty \text { with } d_{\lambda}=\sup _{\lambda^{\prime} \subset \lambda}\left|c_{\lambda^{\prime}}\right|
$$

Multifractal formalism

- Let $S_{f}(q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda}\right|^{q}$ with $d_{\lambda}=\sup _{\lambda^{\prime} \subset \lambda}\left|c_{\lambda^{\prime}}\right|$

Multifractal formalism

- Let $S_{f}(q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda}\right|^{q}$ with $d_{\lambda}=\sup _{\lambda^{\prime} \subset \lambda}\left|c_{\lambda^{\prime}}\right|$
let compute $S_{f}(q, j)$ as $j \rightarrow+\infty$ with the help of the scaling function f defined by

$$
\begin{equation*}
\eta_{f}(q)=\liminf _{j \rightarrow+\infty}\left(\frac{\log \left(S_{f}(q, j)\right)}{\log \left(2^{-j}\right)}\right) \tag{3}
\end{equation*}
$$

Multifractal formalism

- Let $S_{f}(q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda}\right|^{q}$ with $d_{\lambda}=\sup _{\lambda^{\prime} \subset \lambda}\left|c_{\lambda^{\prime}}\right|$
let compute $S_{f}(q, j)$ as $j \rightarrow+\infty$ with the help of the scaling function f defined by

$$
\begin{equation*}
\eta_{f}(q)=\liminf _{j \rightarrow+\infty}\left(\frac{\log \left(S_{f}(q, j)\right)}{\log \left(2^{-j}\right)}\right) ; \tag{3}
\end{equation*}
$$

- If $f \in C^{\delta}\left(\mathbb{R}^{n}\right)$ the multifractal formalism claims
$d_{f}(u)=\inf _{q}\left(u q-\eta_{f}(q)+d\right)$

Multifractal formalism

Let the p-leader: $d_{\lambda, p}=\left(\sum_{\lambda^{\prime} \subset \lambda} 2^{-d\left(j^{\prime}-j\right)}\left|c_{\lambda^{\prime}}\right|^{p}\right)^{1 / p}$.
define $S_{f}(p, q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda, p}\right|^{q}$

Multifractal formalism

Let the p-leader: $d_{\lambda, p}=\left(\sum_{\lambda^{\prime} \subset \lambda} 2^{-d\left(j^{\prime}-j\right)}\left|c_{\lambda^{\prime}}\right|^{p}\right)^{1 / p}$.
define $S_{f}(p, q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda, p}\right|^{q}$
we estimate the decreasing of $S_{f}(p, q, j)$ when $j \rightarrow+\infty$ with the help of the p-scaling function of f defined by

$$
\begin{equation*}
\eta_{f}(p, q)=\liminf _{j \rightarrow+\infty}\left(\frac{\log \left(S_{f}(p, q, j)\right)}{\log \left(2^{-j}\right)}\right) \tag{4}
\end{equation*}
$$

Multifractal formalism

Let the p-leader: $d_{\lambda, p}=\left(\sum_{\lambda^{\prime} \subset \lambda} 2^{-d\left(j^{\prime}-j\right)}\left|c_{\lambda^{\prime}}\right|^{p}\right)^{1 / p}$.
define $S_{f}(p, q, j)=2^{-d j} \sum_{\lambda \in \Lambda_{j}}\left|d_{\lambda, p}\right|^{q}$
we estimate the decreasing of $S_{f}(p, q, j)$ when $j \rightarrow+\infty$ with the help of the p-scaling function of f defined by

$$
\begin{equation*}
\eta_{f}(p, q)=\liminf _{j \rightarrow+\infty}\left(\frac{\log \left(S_{f}(p, q, j)\right)}{\log \left(2^{-j}\right)}\right) \tag{4}
\end{equation*}
$$

the multifractal formalism for the p-exponent claims:

$$
d_{f}^{p}(u)=\inf _{q}\left(u q-\eta_{f}(p, q)+d\right)
$$

Notion of dimension:

Example: Koch's snowflake
Construction:

Notion of dimension:

Covering by 4 segments of length $1 / 3$

Notion of dimension:

Covering by 4 segments of length $1 / 3$

The length of the covering is $\frac{4}{3}$

Notion of dimension:

Covering by 4^{2} segments of length $1 / 3^{2}$

The length of the covering is $\frac{4^{2}}{3^{2}}$

Notion of dimension:

Covering by 4^{3} segments of length $1 / 3^{3}$

The length of the covering is $\frac{4^{3}}{3^{3}}$.

Notion of dimension:

Covering by 4^{3} segments of length $1 / 3^{3}$

The length of the covering is $\frac{4^{3}}{3^{3}}$.
At step n the length of the covering is $\frac{4^{n}}{3^{n}}$.
And so the total length is not finite.

Notion of dimension:

Covering by 4 square of size $1 / 3$

The area of the covering is $\frac{4}{3^{2}}$

Notion of dimension :

Covering by 16 square of size $1 / 3^{2}$

The area of the covering is $\frac{16}{3^{4}}$

Notion of dimension :

Covering by 16 square of size $1 / 3^{2}$

The area of the covering is $\frac{16}{3^{4}}$
At step n the area of the covering is $\frac{4^{n}}{3^{2 n}}$.
And so the total area is zero.

Hausdorff dimension:

Let d such that $0<\lim _{n \rightarrow+\infty} \frac{4^{n}}{3^{n}}<+\infty$.

Hausdorff dimension:

Let d such that $0<\lim _{n \rightarrow+\infty} \frac{4^{n}}{3^{d n}}<+\infty$.
$d=\frac{\ln 4}{\ln 3}$ is the dimension of the flochon.
The dimension gives the size of the "right" covering.

Hausdorff dimension:

Let d such that $0<\lim _{n \rightarrow+\infty} \frac{4^{n}}{3^{d n}}<+\infty$.
$d=\frac{\ln 4}{\ln 3}$ is the dimension of the flochon.
The dimension gives the size of the "right" covering.
Hausdorff measure
Definition 1 Let $F \subset \mathbb{R}^{d}$ and $s \geq 0$.
$\forall \delta>0$, we denote

$$
\mathcal{H}_{\delta}^{s}(F)=\inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}: F \subset \bigcup_{i} U_{i}, \operatorname{diam}\left(U_{i}\right) \leq \delta\right\}
$$

where $\operatorname{diam}\left(U_{i}\right)$ means the diameter of U_{i}.
The s-dimensional Hausdorff measure of F is $\mathcal{H}^{s}(F)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)$.

Dimension

- $\mathcal{H}^{s}(F)$ is a decreasing function of s.

Dimension

- $\mathcal{H}^{s}(F)$ is a decreasing function of s.
- One can easily check that if $t>s$ and $\mathcal{H}^{s}(F)<\infty$ then $\mathcal{H}^{t}(F)=0$.
\rightarrow there exists a critical value of s denoted D such that $\mathcal{H}^{s}(F)=\infty$ if $s>D$ and $\mathcal{H}^{s}(F)=0$ if $s<D$.

Dimension

- $\mathcal{H}^{s}(F)$ is a decreasing function of s.
- One can easily check that if $t>s$ and $\mathcal{H}^{s}(F)<\infty$ then $\mathcal{H}^{t}(F)=0$.
\rightarrow there exists a critical value of s denoted D such that $\mathcal{H}^{s}(F)=\infty$ if $s>D$ and $\mathcal{H}^{s}(F)=0$ if $s<D$.

Definition of the Hausdorff dimension

Definition of the Hausdorff dimension

- Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$
D=\inf \left\{s, \mathcal{H}^{s}(F)=0\right\}=\sup \left\{s, \mathcal{H}^{s}(F)=+\infty\right\} .
$$

Definition of the Hausdorff dimension

- Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$
D=\inf \left\{s, \mathcal{H}^{s}(F)=0\right\}=\sup \left\{s, \mathcal{H}^{s}(F)=+\infty\right\}
$$

- Very difficult to compute numerically for one set.

Definition of the Hausdorff dimension

- Definition 2 Under the previous assumptions, the Hausdorff dimension of F is

$$
D=\inf \left\{s, \mathcal{H}^{s}(F)=0\right\}=\sup \left\{s, \mathcal{H}^{s}(F)=+\infty\right\}
$$

- Very difficult to compute numerically for one set.
- Impossible to compute when you have an infinity of sets !

