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OBJECTIVE/HISTORY OTHER CONSTRUCTIONS

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a
multiresolution analysis of L2[0,1].

I There are many different constructions:

I Dahmen and Micchelli
I Goh, Jiang, and Xia
I Lakey and Pereyra

I None of these methods constructive nonnegative scaling vectors
Φ.
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OBJECTIVE/HISTORY MEYER, DAUBECHIES CONSTRUCTION

I Y. Meyer and Cohen, Daubechies, Vial produced similar methods
for creating MRAs for L2[0,1]:

I Start a given φ that generates an MRA for L2(R) and use it to
create an MRA for L2[0,1].

I For L2[0,∞), we start with S = {φnk (t)}n∈Z,k≥0. Next introduce a
set L of edge functions that:

I satisfy a dilation equation,
I reproduce polynomials of the same order reproduced by {φnk},
I ensures that the set S ∪ L is a Riesz basis for L2[0,∞).
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

I Gilbert Walter and Xiaoping Shen were interested in constructing
nonnegative scaling functions for the purposes of density
estimation.

I They modified members of Daubechies orthogonal family to
perform the task.

I Start with compactly supported and continuous scaling function φ

φ(t) =
N∑

k=0

hkφ(2t − k)

and assume it generates a Multiresolution Analysis (MRA) for
L2(R).

I φ and its integer translates form a partition of unity:∑
k

φ(t − k) = 1
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

I Construct Pr (t), 0 < r < 1 as follows:

Pr (t) =
∑
n∈Z

r |n|φ(t − n)

I We can compute the Fourier transform of Pr (t):

P̂r (ω) =
1− r2

1− 2r cosω + r2 φ̂(ω)

THURSDAY, 20.9.2012 (14:00–14:30) SUMMER SCHOOL, INZELL 4 / 17



OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

I Construct Pr (t), 0 < r < 1 as follows:

Pr (t) =
∑
n∈Z

r |n|φ(t − n)

I We can compute the Fourier transform of Pr (t):

P̂r (ω) =
1− r2

1− 2r cosω + r2 φ̂(ω)

THURSDAY, 20.9.2012 (14:00–14:30) SUMMER SCHOOL, INZELL 4 / 17



OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

Walter and Shen were able to prove that there exists 0 < r0 < 1 such
that for r0 ≤ r < 1, the following hold for Pr :

I Pr (t) ≥ 0, Pr ∈ V0

I Pr solves a dilation equation.

Pr (t) =
∑

k

akPr (2t − k),

where

ak =
∑

n

hk−2nr |n|
1 + r2

1− r2 −
r |n|+1

1− r2 (hk−1−2n + hk+1−2n).

I P̃r (t) = 1
2π(1−r2)

((1 + r2)φ(t)− r(φ(t − 1) + φ(t + 1)))

I Pr generates the same MRA for L2(R) as φ.
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

Start with the Daubechies 4-tap orthonormal scaling function φ(t).

THURSDAY, 20.9.2012 (14:00–14:30) SUMMER SCHOOL, INZELL 4 / 17



OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

Use r = −φ(2) to obtain

Note that both orthogonality and compact support are lost.
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OBJECTIVE/HISTORY OUR CONSTRUCTION

I Our method is a hybrid of Meyer (edge functions) and Walter,
Shen (nonnegative).

I Use a given scaling vector Φ, compactly supported, to create a
nonnegative and compactly supported scaling vector from Φ that
generates an MRA for L2[0,1].

I Preserve polynomial accuracy of the original scaling vector Φ.
I Try not to create too many edge functions.
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PRELIMINARIES MRA BASICS

Definition. Let Φ = (φ1, φ2, . . . , φA)T , φj ∈ L2(R) and consider the set

V0 = 〈φj(· − k)〉k∈Z, j=1,...,A

We say the nested set of spaces

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·

forms a Multiresolution Analysis (MRA) of L2(R) if:

I ∪n∈ZVn = L2(R) (density),
I ∩n∈ZVn = {0} (separation),
I f ∈ Vn ⇔ f (2−n·) ∈ V0 (dilation),
I f ∈ Vn ⇔ f (· − k) ∈ Vn (translation),
I The vector Φ and its integer translates generate a Riesz basis for

V0.
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PRELIMINARIES MRA BASICS

I In this case, Φ satisfies a matrix refinement equation

Φ(t) =
∑

k

Ck Φ(2t − k)

Here Ck are A× A matrices.

I We further assume that:

I Each φ` is compactly supported on [0,M`], M` ∈ Z+ and
continuous.

I There is a vector c = (c1, . . . , cA)T for which

A∑
`=1

∑
k

c`φ
`(t − k) =

∑
k

c · Φ(t − k) = 1

This is the partition of unity condition.
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PRELIMINARIES MRA BASICS

Finally, we assume that Φ has polynomial accuracy m. That is, there
exist constants f `nk such that for n = 0,1, . . . ,m − 1, we have

tn =
A∑
`=1

∑
k

f `nkφ
`(t − k) =

∑
k

fnk · Φ(t − k)

Note that from the previous slide

1 = t0 =
∑

k

c · Φ(t − k) =
∑

k

f0k · Φ(t − k)

so that c = f0k for all k ∈ Z.
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PRELIMINARIES MRA BASICS

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists
multi-scaling functions Φ that form a multiresolution analysis for L2(R)
that the φi

I are compacted supported,
I have polynomial approximation accuracy m,
I are (anti)symmetric,
I generate an orthonormal basis for V0.
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PRELIMINARIES DGHM EXAMPLE

Example - DGHM. (Donovan, Geronimo, Hardin, Massopust) Take
A = 2, with the 4-term matrix refinement equation

Φ(t) =
3∑

k=0

Ck Φ(2t − k)

where

C0 =

[
3/5 4

√
2/5

−
√

2/20 −3/10

]
, C1 =

[
3/5 0

9
√

2/20 1

]

C2 =

[
0 0

9
√

2/20 −3/10

]
, C3 =

[
0 0

−
√

2/20 0

]
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PRELIMINARIES DGHM EXAMPLE

I φ1(t) and φ2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V0.

I supp(φ1) = [0,1] and supp(φ2) = [0,2].
I Achieve polynomial accuracy m = 2.
I Form a partition of unity with c1 = (1 +

√
2)−1 and c2 =

√
2c1.

I φ1(t) ≥ 0, t ∈ R.
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PRELIMINARIES PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

Φ(t) =
2∑

k=0

Ck · Φ(2t − k)

where

C0 =
1

20

[
−7 15
−4 10

]
,C1 =

1
20

[
10 0

0 20

]
,C2 =

1
20

[
−7 −15

4 10

]

I Φ and its translates are not orthogonal.
I Φ is continuous and has approximation order m = 3.
I supp

(
φ1) = supp

(
φ2) = [0,2].

I Partition of unity: c1 = 0 and c2 = 1.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

I The results of Walter and Shen can be extended to scaling vectors
Φ with only a modest condition on the partition of unity coefficients
c of Φ.

I Moreover, the construction can be altered so that compact support
can be retained - that’s the contribution of using scaling vectors.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Let Φ = (φ1, . . . , φA). We say Φ satisfies Condition B if for some
j ∈ {1,2, . . . ,A}, φj(t) ≥ 0 for t ∈ R and there exist finite index
sets Λi and constants cik for i 6= j such that:

(B1) φ̃i (t) := φi (t) +
∑

k∈Λi

cikφ
j (t − k) ≥ 0, t ∈ R.

(B2) dj := cj −
∑
i 6=j

∑
k∈Λi

cicik ≥ 0,

(B3) ci ≥ 0, for i 6= j .

Here c = (c1, . . . , cA)T are the coefficients that form the partition of
unity for Φ:

1 =
∑

k

c · Φ(t − k)
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Theorem. (D. Ruch, PVF) Suppose the scaling vector

Φ = (φ1, φ2, . . . , φA)T

is bounded, compactly supported, has polynomial accuracy m ≥ 1,
and satisfies Condition B. Then the nonnegative scaling vector

Φ̃ = (φ̃1, . . . , φ̃j−1, φj , φ̃j+1, . . . φ̃A)T

is a bounded, compactly supported scaling vector with accuracy m ≥ 1
that generates the same MRA as Φ.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Outline of Proof. The proof is constructive. WLOG assume j = A.

I Build M(z) to be an upper triangular matrix, with ones on the main
diagonal and

∑
k∈Λi

cikzk in the i , j position (i < j). Here z = e−iω.
I The vector that works is

Φ̃ = F−1
(

M(z)Φ̂(z)
)
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NONNEGATIVE SCALING VECTORS DGHM EXAMPLE

Example. Recall the DGHM example.

I φ1(t) ≥ 0.
I supp

(
φ1) = [0,1] and supp

(
φ2) = [0,2].

I φ1, φ2 are continuous and have polynomial accuracy m = 2.
I the partition of unity coefficients are

c1 = (1 +
√

2)−1 and c2 =
√

2c1.
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NONNEGATIVE SCALING VECTORS DGHM EXAMPLE

We take the index set Λ2 = {0,1} with c20 = c21 = 1
2 so that

φ̃2 = φ2(t) +
1
2
φ1(t) +

1
2
φ1(t − 1)

The new partition of unity coefficients are

d1 = c1 > 0
d2 = c2 − c1 (c20 + c21) > 0
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NONNEGATIVE SCALING VECTORS PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector
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NONNEGATIVE SCALING VECTORS PLONKA/STRELA EXAMPLE

We take the index set Λ1 = {0} with c10 = 1.6 so that

φ̃1 = φ1(t) + 1.6φ2(t)

The new partition of unity coefficients are

d1 = c1 = 0
d2 = c2 − c1c10 = c2 > 0
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

Suppose Φ(t) =
(
φ1(t), φ2(t), . . . , φA(t)

)T

I Compact support: supp
(
φi) = [0,Mi ], Mi ∈ Z+.

I Φ satisfies a finite-length matrix refinement equation:

Φ(t) =
N∑

k=0

Ck Φ(2t − k)

I Each φi(t) is continuous and Φ achieves polynomial accuracy
m ≥ 1. That is, for n = 0, . . . ,m − 1 we can write

tn =
A∑
`=1

∑
k

f `nkφ
`(t − k) =

∑
k

fnk · Φ(t − k)

I Φ generates an MRA for L2(R).
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

I We will construct the left edge functions for V0[0,∞). The right
edge functions follow analogously.

I For ` = 1, . . . ,A, suppose that the set S of non-zero functions

S =
{
φ
`
k (t)

}
k∈Z

where
φ
`
k (t) = φ`(t − k)

∣∣
[0,∞)

are linearly independent and let n(S) be the number of elements
in S.

I S is simply the right shifts of φ` and the left shifts for
k = 1, . . . ,M` − 1. Here, [0,M`] is the support of φ`.
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

We define the left edge functions φL,n by

φL,n(t) =
A∑
`=1

0∑
k=1−M`

f`nkφ
`
k (t)

We have
φL,n(t) = tn on [0,1]

We are building the edge function by simply taking those φ`k (t) that
contribute to tn on [0,1].
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

Proposition. The φL,n(t) satisfy a matrix refinement equation.

The proof is straightforward and you end up with

φL,n(t) = 2−nφL,n(2t) +
N∑

j=2−2Mn

qnjΦ(2t − j)

for each n = 0,1, . . . ,m − 1, where

qnj =


0∑

k=1−Mn

fnkCj−2k − 2−nfnj , j ∈ {1−Mn, . . . ,0}

0∑
k=1−Mn

fnkCj−2k , j ∈ {2− 2Mn, . . . ,−Mn} ∪ {1, . . . ,N}
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

Example. Recall the DGHM example.

I φ1(t) ≥ 0, M1 = 1, M2 = 2.
I φ1, φ2 are continuous and have polynomial accuracy m = 2.
I the partition of unity coefficients are

f00 =

(
1

1 +
√

2
,

√
2

1 +
√

2

)T

.

I S =
{
φ1(t), φ2

(t), φ2
(t + 1)

}
.
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

We can easily write down the formula for the edge function (noting that
f `0,k = f `0,0 for all k ∈ Z):

φL,0(t) = f 1
0,0φ

1(t) + f 2
0,0

(
φ

2
(t) + φ

2
(t + 1)

)
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

If we want a nonnegative edge function, then we need to use the
scaling vector:

Here,

f00 = (c1, c2 − c1)T =

(
1

1 +
√

2
,3− 2

√
2
)T
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

The resulting edge function:
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

Φ(t) =
2∑

k=0

Ck · Φ(2t − k)

I Φ and its translates are not orthogonal.
I Φ is continuous and has approximation order m = 3.
I M1 = M2 = 2.
I Partition of unity: f0,0 = (0,1)T .

I We also need f1,0 =
(1

6 ,1
)T

.
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

We use the scaling vector
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

We can write down the (nonnegative!) edge functions:

φL,0(t) = φ
1
(t) + φ

1
(t + 1)

φL,1(t) = φ
1
(t)− 1

6

(
φ

2
(t) + φ

2
(t + 1)

)
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

Theorem. (D. Ruch, PVF) For some index set B, let {Li} be a finite set
of left edge functions with support [0, δi ] and assume that
{Li , φ

`(· − k)}i,`,k≥0 is a linearly independent set. Then
{Li(2j ·), φ`(2j · −k)}i,`,k≥0 is a Riesz basis for Vj , where
L2[0,∞) = ∪jVj .
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EDGE FUNCTIONS A CONJECTURE

I The DGHM scaling vector has polynomial accuracy m = 2, yet we
only constructed the edge function φL,0(t) (1 on [0,1].

I The Plonka/Strela scaling vector has polynomial accuracy m = 3,
yet we only constructed the edge functions φL,0(t) (1 on [0,1]) and
φL,1(t) (t on [0,1]).

I In both cases it seems we are missing an edge function - φL,1(t)
for DGHM and φL,2(t) for Plonka/Strela.

I But it turns out that we don’t need them - in both cases we were
able to find constants αj so that

m−2∑
j=0

αjφL,j(t) +
2∑

j=1

αj + m − 2φj
(t − k) = tm−1

on [0,1]. (Here, m = 2 for DGHM and m = 3 for Plonka/Strela).
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EDGE FUNCTIONS A CONJECTURE

I It is natural to ask if this holds in a more general setting.

I If so, then we would only need n(S)− A edge functions to
reproduce tm−1 on [0,1].

I In the case where the number of scaling vectors is A = 2, we have
n(S)− A = m − 1. Meyer’s and Daubechies’ constructions both
required m edge functions.

I Important Note: We are assuming the total support of the scaling
vector, M1 + · · ·+ MA = m + 1. All our example scaling vectors
plus the Daubechies family of scaling functions satisfy this
property.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

I We assume M1 + · · ·MA = m + 1.

I Then we seek α0, . . . , αm such that

m−A∑
j=0

αjφL,j(t) +
A∑
`=1

α`+m−Aφ
j(t) = tm−1

on [0,1].

I Rewriting using the linearly independent φ`k (t) and the definition of
the edge functions gives the following system:

m−A∑
j=0

αj

 A∑
`=1

0∑
k=1−M`

f `j,kφ
`
k (t)

+
A∑
`=1

α`+m−Aφ
`
0(t) =

A∑
`=1

0∑
k=1−M`

f `m−1,kφ
`
k (t)
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EDGE FUNCTIONS FORMULATING THE PROBLEM

I This system can be rewritten in the form Mα = b where

M =

[
Q 0
R I

]
Here, M has dimension (m + 1)× (m + 1), I is the A× A identity
matrix, and Q is an (m − A + 1)× (m − A + 1) matrix.

I Certainly if Q is nonsingular, our assertion holds.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

We can further refine Q. If we set

E`
k =

[
f `0,k f `1,k f `2,k · · · f `m−2,k

]
then we can write Q as

Q =



E1
1
...

E1
M1−1

...

EA
1
...

EA
MA−1


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EDGE FUNCTIONS FORMULATING THE PROBLEM

I A lemma due to G. Strang says that

f `j,k+1 =

j∑
i=0

(
j
i

)
f `i,j

I We can reformulate this lemma in terms of our rows E`
k and the

upper triangular Pascal matrix

PU =


1 1 1 1 · · ·
0 1 2 3 · · ·
0 0 1 3 · · ·
0 0 0 1 · · ·

...


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EDGE FUNCTIONS FORMULATING THE PROBLEM

I In terms of the Pascal matrix, Strang’s lemma says

E`
k+1 = E`

kPU = · · · = E`
1Pk−1

U = E`
0Pk

U

or
E`

k+1P−k
U = E`

kP−k+1
U = · · · = E`

1P−1
U = E`

0

I Then Q becomes

Q =



E1
0 P−1

U
...

E1
0 P1−M1

U

...

EA
0 P−1

U
...

EA
0 P1−M1

U


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EDGE FUNCTIONS FORMULATING THE PROBLEM

I It is not clear that Q is always nonsingular. It would seem there
needs to be conditions placed on the E`

0.

I In the case where M1 = L > 1 and Mk = 1, k = 2, . . . ,A, (DGHM,
for example) we can reduce Q to

Q =


E1

0 P−1
U

E1
0 P−2

U
...

E1
0 P1−L

U


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EDGE FUNCTIONS FORMULATING THE PROBLEM

Using the lower triangular Pascal matrix (PL = PT
U ), we can write Q =

E1
0 P−1

U
E1

0 P−2
U

...
E1

0 P1−L
U

 =


E1

0
E1

0 P−1
U

...
E1

0 P2−L
U

P−1
U = PL

P−1
L


E1

0
E1

0 P−1
U

...
E1

0 P2−L
U

P−1
U



= PL





E1
0

E1
0

(
P−1

U − I
)

E1
0

(
P−1

U − I
)2

...

E1
0

(
P−1

U − I
)L−2


P−1

U


= L · U
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EDGE FUNCTIONS FORMULATING THE PROBLEM

I The first matrix is lower triangular with determinant 1 while the
second matrix is upper triangular with determinant Cf 1

0,0, C > 0.
So if f 1

0,0 6= 0, our matrix Q is nonsingular in this case.

I This is certainly the case for the DGHM scaling vector as

f 1
0,0 =

(
1 +
√

2
)−1

.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

Thank You - Questions?
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