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OBJECTIVE/HISTORY OTHER CONSTRUCTIONS

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a
multiresolution analysis of L2[0, 1].
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OBJECTIVE/HISTORY OTHER CONSTRUCTIONS

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a
multiresolution analysis of L2[0, 1].
» There are many different constructions:

» Dahmen and Micchelli
» Goh, Jiang, and Xia
» Lakey and Pereyra

» None of these methods constructive nonnegative scaling vectors
o.
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[OL:N)=IVAAYAS IVl MEYER, DAUBECHIES CONSTRUCTION

» Y. Meyer and Cohen, Daubechies, Vial produced similar methods
for creating MRAs for L2[0, 1]:
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» Y. Meyer and Cohen, Daubechies, Vial produced similar methods
for creating MRAs for L2[0, 1]:

» Start a given ¢ that generates an MRA for L?(R) and use it to
create an MRA for L2[0, 1].

» For L2[0, c0), we start with S = {@nk () }nez.k>0- Next introduce a
set L of edge functions that:
» satisfy a dilation equation,

» reproduce polynomials of the same order reproduced by {¢«},
» ensures that the set SU L is a Riesz basis for L2[0, o).
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

» Gilbert Walter and Xiaoping Shen were interested in constructing
nonnegative scaling functions for the purposes of density
estimation.
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$(1) = hep(2t — k)
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and assume it generates a Multiresolution Analysis (MRA) for
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

» Gilbert Walter and Xiaoping Shen were interested in constructing
nonnegative scaling functions for the purposes of density
estimation.

» They modified members of Daubechies orthogonal family to
perform the task.

» Start with compactly supported and continuous scaling function ¢

N
$(1) = hep(2t — k)
k=0

and assume it generates a Multiresolution Analysis (MRA) for
L2(R).
¢ and its integer translates form a partition of unity:

D ot —k)=1
k

>
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WALTER AND CHEN’S CONSTRUCTION

» Construct P,(t), 0 < r < 1 as follows:

Pr(t) = rMo(t —n)

nez
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

» Construct P,(t), 0 < r < 1 as follows:

Pr(t) = rMo(t —n)
nez
» We can compute the Fourier transform of P,(t):

Pow) = 1-1r2
T Z2rcosw + 2

d(w)
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Walter and Shen were able to prove that there exists 0 < rp < 1 such
that for ry < r < 1, the following hold for P;:

>Pr(t)20, PrGVo
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» P, solves a dilation equation.

P (t) = akPr(2t — k),
k

where

1472 rlnit
ak = th—znf"”1 2~ 72 (Pk—1-2n+ P 1-2n).
n
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where
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n

> Pr(t) = gy (1 4+ r2)o(t) — r(e(t — 1) + (t +1)))

==
v UNIVERSITY of ST. THOMAS

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL 4/17




OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

Walter and Shen were able to prove that there exists 0 < rp < 1 such
that for ry < r < 1, the following hold for P;:

>Pr(t)20, PrEVo
» P, solves a dilation equation.

Pi(t) = acPr(2t — k),
k
where

142 rlol+
ak = Z hk—2nr‘n| 1 — r2 _
n

72 (Pk—1-2n + Pic1-2n).

> Pr(t) = gy (1 4+ r2)o(t) — r(e(t — 1) + (t +1)))

» P, generates the same MRA for L2(R) as ¢.
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OBJECTIVE/HISTORY

WALTER AND CHEN’S CONSTRUCTION

Start with the Daubechies 4-tap orthonormal scaling function ¢(t).
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OBJECTIVE/HISTORY WALTER AND CHEN’S CONSTRUCTION

Use r = —¢(2) to obtain
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Note that both orthogonality and compact support are lost.
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OBJECTIVE/HISTORY OUR CONSTRUCTION

» Our method is a hybrid of Meyer (edge functions) and Walter,
Shen (nonnegative).
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OBJECTIVE/HISTORY OUR CONSTRUCTION

v

Our method is a hybrid of Meyer (edge functions) and Walter,
Shen (nonnegative).

» Use a given scaling vector ¢, compactly supported, to create a
nonnegative and compactly supported scaling vector from ¢ that
generates an MRA for L2[0, 1].

Preserve polynomial accuracy of the original scaling vector .
Try not to create too many edge functions.

v

>
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Definition. Let ® = (¢, #%,...,¢")7, ¢/ € L2(R) and consider the set
Vo = (I = K)kez,  j=1..A
We say the nested set of spaces
ecVaicVyacVyc---

forms a Multiresolution Analysis (MRA) of L?(R) if:
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ecVaicVyacVyc---

forms a Multiresolution Analysis (MRA) of L?(R) if:
> Unez Vi = L3(R) (density),
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B DAl MRA Basics
Definition. Let ® = (¢, #%,...,¢")7, ¢/ € L2(R) and consider the set

Vo= (-~ Kkez,  j=1...a

We say the nested set of spaces

30y

CcVicVoc Vi

forms a Multiresolution Analysis (MRA) of L?(R) if:
> Unez Vi = L?(R) (density),
» Nnez Vi = {0} (separation),
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N . LA MRA BASICS

Definition. Let ® = (¢, #%,...,¢")7, ¢/ € L2(R) and consider the set

Vo= (00— Kkez, 1

We say the nested set of spaces

A

30y

CcVicVoc Vi

forms a Multiresolution Analysis (MRA) of L?(R) if:
> Unez Vi = L?(R) (density),
» Nnez Vi = {0} (separation),
» feV,s f(27") € Wy (dilation),
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We say the nested set of spaces
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30y

CcVicVoc Vi
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> Unez Vo = L%(R) (density),
» Nnez Vi = {0} (separation),
» feV,s f(27") € Wy (dilation),
» fe V,s f(- — k) € V, (translation),
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N . LA MRA BASICS

Definition. Let ® = (¢, #%,...,¢")7, ¢/ € L2(R) and consider the set

Vo= (00— Kkez, 1

We say the nested set of spaces

A

30y

CcVicVoc Vi

forms a Multiresolution Analysis (MRA) of L?(R) if:
> Unez Vo = L%(R) (density),
» Nnez Vi = {0} (separation),
» feV,s f(27") € Wy (dilation),
» fe V,s f(- — k) € V, (translation),

» The vector ® and its integer translates generate a Riesz basis for
Vo.
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» In this case, ¢ satisfies a matrix refinement equation

o(t) =) Ckd(2t - k)
k

Here Cy are A x A matrices.
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» In this case, ¢ satisfies a matrix refinement equation

o(t) =) Ckd(2t - k)
k

Here Cy are A x A matrices.
» We further assume that:
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» In this case, ¢ satisfies a matrix refinement equation

o(t) =) Ckd(2t - k)
k

Here Cy are A x A matrices.
» We further assume that:

» Each ¢ is compactly supported on [0, My], M, € Z, and
continuous.
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» In this case, ¢ satisfies a matrix refinement equation

o(t) =) Ckd(2t - k)
k

Here Cy are A x A matrices.
» We further assume that:
» Each ¢ is compactly supported on [0, My], M, € Z, and
continuous.
» There is a vector ¢ = (¢, ...,ca)T for which

A
S e (t—k)=> c-d(t—k)=1
=1 k k

This is the partition of unity condition.
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Finally, we assume that ® has polynomial accuracy m. That is, there
exist constants f°, such that forn=0,1,...,m— 1, we have

ZZ (= K) = - D(t— k)
k
Note that from the previous slide

1=10=> c - o(t—k)=> fox O(t—k
k k

so that ¢ = fy, for all k € Z.

==
v UNIVERSITY of ST. THOMAS

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL 6/17




Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists
multi-scaling functions ¢ that form a multiresolution analysis for L2(R)
that the ¢
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Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists
multi-scaling functions ¢ that form a multiresolution analysis for L2(R)
that the ¢

» are compacted supported,
» have polynomial approximation accuracy m,
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Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists
multi-scaling functions ¢ that form a multiresolution analysis for L2(R)
that the ¢

» are compacted supported,
» have polynomial approximation accuracy m,
» are (anti)symmetric,
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Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists
multi-scaling functions ¢ that form a multiresolution analysis for L2(R)
that the ¢

» are compacted supported,

» have polynomial approximation accuracy m,
» are (anti)symmetric,

» generate an orthonormal basis for V.
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PRELIMINARIES DGHM EXAMPLE

Example - DGHM. (Donovan, Geronimo, Hardin, Massopust) Take
A = 2, with the 4-term matrix refinement equation

3
O(t) =) Ckd(2t — k)
k=0

where

C":[—\%?zo i\:ﬁ/g] 012[9}2/?20 ”

%oz so] @] vem o)
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PRELIMINARIES DGHM EXAMPLE

» ¢'(t) and ¢2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V.
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PRELIMINARIES DGHM EXAMPLE

» ¢'(t) and ¢2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V.

> supp(¢') = [0, 1] and supp(¢?) = [0, 2].
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PRELIMINARIES DGHM EXAMPLE

» ¢'(t) and ¢2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V.

> supp(¢') = [0, 1] and supp(¢?) = [0, 2.
» Achieve polynomial accuracy m = 2.
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PRELIMINARIES DGHM EXAMPLE

v

¢'(t) and ¢2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V.

supp(¢') = [0, 1] and supp(¢?) = [0, 2.
Achieve polynomial accuracy m = 2.
Form a partition of unity with ¢y = (1 ++v/2)~" and ¢, = v2¢;.

v

v

v
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PRELIMINARIES DGHM EXAMPLE

v

¢'(t) and ¢2(t) are both continuous and along with their integer
translates, form an orthonormal basis for V.

supp(¢') = [0, 1] and supp(¢?) = [0, 2].

Achieve polynomial accuracy m = 2.

Form a partition of unity with ¢y = (1 ++v/2)~" and ¢, = v2¢;.
¢'(t) >0,teR.

vV v v v
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PRELIMINARIES DGHM EXAMPLE

(=]
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PRELIMINARIES PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2

O(t) =Y Ci-d(2t - K)

k=0

where

1[-7 15 1710 © 1[-7 —15
C0_20[—4 10]’01_20[ 020]’02_20{ 4 10}
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where
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» & and its translates are not orthogonal.
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Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2

O(t) =Y Ci-d(2t - K)

k=0

where
1[-7 15 1710 0 1[-7 —15
C0_20[—4 10]’01_20[ 0 20]’02_20{ 4 10}

» & and its translates are not orthogonal.
» & is continuous and has approximation order m = 3.
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PRELIMINARIES PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2

O(t) =Y Ci-d(2t - K)

k=0

where
1[-7 15 1710 0 1[-7 —15
C0_20[—4 10]’01_20[ 0 20]’02_20{ 4 10}

» & and its translates are not orthogonal.
» & is continuous and has approximation order m = 3.

> supp (¢') = supp (¢%) = [0,2].
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PRELIMINARIES PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2
O(t) =Y Ci-d(2t - K)
k=0
where
1[-7 15 1710 0 1[-7 —15
C0_20[—4 10]’01_20[ 0 20]’02_20{ 4 10}

» & and its translates are not orthogonal.

» & is continuous and has approximation order m = 3.
> supp (¢') = supp (¢%) = [0,2].

» Partition of unity: ¢, =0and ¢, = 1.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

» The results of Walter and Shen can be extended to scaling vectors
¢ with only a modest condition on the partition of unity coefficients
c of ¢.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

» The results of Walter and Shen can be extended to scaling vectors

¢ with only a modest condition on the partition of unity coefficients
c of .

» Moreover, the construction can be altered so that compact support
can be retained - that’s the contribution of using scaling vectors.

==
v UNIVERSITY of ST. THOMAS

9/17

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL



NONNEGATIVE SCALING VECTORS CONSTRUCTION

Let ® = (¢',...,¢"). We say o satisfies Condition B if for some
je{1,2,..., A}, ¢/(t) > 0 for t € R and there exist finite index
sets A; and constants cj for i # j such that:

(B1) ¢(t):==¢/(t) + 3 cud/(t—k) >0, teR.

keN;
(B2) di:=¢—> > cick >0,
i£] kEN,
(B3) ¢ >0, fori+#j.

Here ¢ = (cy,...,ca)T are the coefficients that form the partition of
unity for :

1=> c-o(t—k)
k

==
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Theorem. (D. Ruch, PVF) Suppose the scaling vector
¢ = (0", ¢%...,0"T"

is bounded, compactly supported, has polynomial accuracy m > 1,
and satisfies Condition B. Then the nonnegative scaling vector

b= (... T

is a bounded, compactly supported scaling vector with accuracy m > 1
that generates the same MRA as .
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Outline of Proof. The proof is constructive. WLOG assume j = A.
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Outline of Proof. The proof is constructive. WLOG assume j = A.

» Build M(z) to be an upper triangular matrix, with ones on the main
diagonal and 3, cxz¥ in the i, j position (i < j). Here z = e~
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NONNEGATIVE SCALING VECTORS CONSTRUCTION

Outline of Proof. The proof is constructive. WLOG assume j = A.
» Build M(z) to be an upper triangular matrix, with ones on the main
diagonal and 3, cxz¥ in the i, j position (i < j). Here z = e~
» The vector that works is

&= 7" (M2)d(2))
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THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL 9/17




NONNEGATIVE SCALING VECTORS DGHM EXAMPLE

Example. Recall the DGHM example.

¢'(t) > 0.

supp (¢') = [0, 1] and supp (¢?) = [0,2].

#', $ are continuous and have polynomial accuracy m = 2.
the partition of unity coefficients are

=(1+v2)"" and ¢ =Vv2c.

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL 10/17
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NONNEGATIVE SCALING VECTORS DGHM EXAMPLE

We take the index set A, = {0,1} with cp = o1 = % so that

72 _ 42 11 11 o
P = GR(t) + 50' (1) + 50" (t— 1)

b
T

£, \_

v

The new partition of unity coefficients are

d1:C1>0

=0 0 (60 €2) > O
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NONNEGATIVE SCALING VECTORS PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2
O(t) =Y Ci-d(2t - K)
k=0
where
1[-7 15 1710 0 1[-7 —15
C0_20[—4 10]’01_20[ 0 20]’02_20{ 4 10}

» & and its translates are not orthogonal.

» & is continuous and has approximation order m = 3.
> supp (¢') = supp (¢%) = [0,2].

» Partition of unity: ¢, =0and ¢, = 1.
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PLONKA/STRELA EXAMPLE
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NONNEGATIVE SCALING VECTORS PLONKA/STRELA EXAMPLE

We take the index set A; = {0} with ¢ig = 1.6 so that

o' = ¢'(t) +1.6¢%(1)

The new partition of unity coefficients are
d1 =c¢ =0
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EDGE FUNCTION CONSTRUCTION

Suppose ®(t) = (¢'(t), ¢3(1), .. .,¢A(t))T
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

Suppose (1) = (¢'(t), (1),..., 6A(t))
» Compact support: supp (¢') = [0, M]], M; € Z..
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

T
Suppose (1) = (¢'(1), *(1),..., ¢"(1))

» Compact support: supp (¢') = [0, M]], M; € Z..

» & satisfies a finite-length matrix refinement equation:

N
o(t) =) Cxd(2t — k)
k=0
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

T
Suppose (1) = (¢'(1), *(1),..., ¢"(1))

» Compact support: supp (¢') = [0, M]], M; € Z..

» & satisfies a finite-length matrix refinement equation:

N
o(t) =) Cxd(2t — k)

» Each ¢/(t) is continuous and ¢ achieves polynomial accuracy
m>1. Thatis,forn=0,...,m—1 we can write

A

ZZ S (t—K) =) fo- O(t— K)
k

k
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

T
Suppose (1) = (¢'(1), *(1),..., ¢"(1))

» Compact support: supp (¢') = [0, M]], M; € Z..

» & satisfies a finite-length matrix refinement equation:

N
o(t) =) Cxd(2t — k)
k=0

» Each ¢/(t) is continuous and ¢ achieves polynomial accuracy
m>1. Thatis,forn=0,...,m—1 we can write

A

=" i (t—K) = fak - O(t— k)
k k

=1

» & generates an MRA for L2(R).
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

» We will construct the left edge functions for V[0, o). The right
edge functions follow analogously.
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

» We will construct the left edge functions for V[0, o). The right
edge functions follow analogously.

» For/=1,..., A, suppose that the set S of non-zero functions

s={a®}

keZ

where

Gi) = 6t = K)[ o)

are linearly independent and let n(S) be the number of elements
in S.
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

» We will construct the left edge functions for V[0, o). The right
edge functions follow analogously.

» For/=1,..., A, suppose that the set S of non-zero functions

s={a®}

keZ

where
¢

ak(t) = d’e(t - k)’[opo)

are linearly independent and let n(S) be the number of elements
in S.

» Sis simply the right shifts of ¢ and the left shifts for
k=1,...,M,—1. Here, [0, M,] is the support of ¢*.
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

We define the left edge functions ¢, , by

¢L n(t) - Z Z k¢k

=1 k=1—M,

We have
dLa(t)y=1t" on [0,1]

We are building the edge function by simply taking those ﬁ(t) that
contribute to t" on [0, 1].
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SCALING VECTORS ON THE INTERVAL EDGE FUNCTION CONSTRUCTION

Proposition. The ¢ ,(t) satisfy a matrix refinement equation.

The proof is straightforward and you end up with

ob"(t) = 27" p(2t) + Z a,®(2t - j)
j=2—-2Mp
foreachn=0,1,...,m— 1, where

0
Z nij—2k — 27nfnj, j S {1 — Mn, . ,0}
an =

0
Z fnijfgk, jE{2f2Mn,...,an}U{1,...,N}
1-Mj,

k=
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

Example. Recall the DGHM example.

")
T

|
-
.
b

» o' () >0, M =1, My =2.
» ¢!, ¢? are continuous and have polynomial accuracy m = 2.
» the partition of unity coefficients are

foo = 1 v2
T 1 V2 142

> 5= {0'(0.5° 0.5+ )}
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

We can easily write down the formula for the edge function (noting that
f§ =1t forall k € Z):

bLo(t) = B (1) + By (6°(1) + 8°(t + 1)

1

")

Y
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SCALING VECTORS ON THE INTERVAL DGHM EXAMPLE

If we want a nonnegative edge function, then we need to use the

scaling vector:

b
T

Here,

=1 4

1 T
foo = (c1. 2 —¢1) = (1,3—2\@>

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL
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DGHM EXAMPLE

The resulting edge function:

[N
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

Example. G. Plonka and V. Strela used a two-scale similarity transform
in the frequency domain to construct the scaling vector

2

> Ck-d(2t — k)

k=0

o(t)

¢ and its translates are not orthogonal.

¢ is continuous and has approximation order m = 3.
My =M, = 2.

Partition of unity: foo = (0,1)7.

» We also need f1 o = (3, 1)T.
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PLONKA/STRELA EXAMPLE

We use the scaling vector
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SCALING VECTORS ON THE INTERVAL

PLONKA/STRELA EXAMPLE

We can write down the (nonnegative!) edge functions:

SLo(t) =8 (t)+ ' (t+1)

b

1 1
oLa(t) =9 (t) — 5

() + @t +1)

e

RSITY of ST. THOMAS
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SCALING VECTORS ON THE INTERVAL PLONKA/STRELA EXAMPLE

Theorem. (D. Ruch, PVF) For some index set B, let {L;} be a finite set
of left edge functions with support [0, ;] and assume that

{Li, #(- — K)}is k>0 is a linearly independent set. Then

{Li(2-), $'(2/ - —K)}i o k>0 is @ Riesz basis for V;, where

L2[07 OO) = W

==
v UNIVERSITY of ST. THOMAS

THURSDAY, 20.9.2012 (14:00-14:30) SUMMER SCHOOL, INZELL 15717




EDGE FUNCTIONS A CONJECTURE

» The DGHM scaling vector has polynomial accuracy m = 2, yet we
only constructed the edge function ¢, o(t) (1 on [0, 1].
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EDGE FUNCTIONS A CONJECTURE

» The DGHM scaling vector has polynomial accuracy m = 2, yet we
only constructed the edge function ¢, o(t) (1 on [0, 1].

» The Plonka/Strela scaling vector has polynomial accuracy m = 3,
yet we only constructed the edge functions ¢, o(t) (1 on [0, 1]) and
¢r1(t) (ton [0, 1]).
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EDGE FUNCTIONS A CONJECTURE

» The DGHM scaling vector has polynomial accuracy m = 2, yet we
only constructed the edge function ¢, o(t) (1 on [0, 1].

» The Plonka/Strela scaling vector has polynomial accuracy m = 3,
yet we only constructed the edge functions ¢, o(t) (1 on [0, 1]) and
¢r1(t) (ton [0, 1]).

» In both cases it seems we are missing an edge function - ¢, 1(f)
for DGHM and ¢, »(t) for Plonka/Strela.
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EDGE FUNCTIONS A CONJECTURE

» The DGHM scaling vector has polynomial accuracy m = 2, yet we
only constructed the edge function ¢, o(t) (1 on [0, 1].

» The Plonka/Strela scaling vector has polynomial accuracy m = 3,
yet we only constructed the edge functions ¢, o(t) (1 on [0, 1]) and
¢r1(t) (ton [0, 1]).

» In both cases it seems we are missing an edge function - ¢, 1(f)
for DGHM and ¢, »(t) for Plonka/Strela.

» But it turns out that we don’t need them - in both cases we were
able to find constants «; so that

m—2 2 .
Y abri(t)+ > aj+m—24(t—k) =t
j=0 j=1

on [0, 1]. (Here, m = 2 for DGHM and m = 3 for Plonka/Strela).
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EDGE FUNCTIONS A CONJECTURE

» It is natural to ask if this holds in a more general setting.
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EDGE FUNCTIONS A CONJECTURE

» It is natural to ask if this holds in a more general setting.

» If so, then we would only need n(S) — A edge functions to
reproduce t™1 on [0, 1].
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EDGE FUNCTIONS A CONJECTURE

» It is natural to ask if this holds in a more general setting.

» If so, then we would only need n(S) — A edge functions to
reproduce t™1 on [0, 1].

» In the case where the number of scaling vectors is A = 2, we have
n(S) — A= m— 1. Meyer’s and Daubechies’ constructions both
required m edge functions.
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EDGE FUNCTIONS A CONJECTURE

» It is natural to ask if this holds in a more general setting.

» If so, then we would only need n(S) — A edge functions to
reproduce t™1 on [0, 1].

» In the case where the number of scaling vectors is A = 2, we have
n(S) — A= m— 1. Meyer’s and Daubechies’ constructions both
required m edge functions.

» Important Note: We are assuming the total support of the scaling
vector, My + - -- + My = m+ 1. All our example scaling vectors
plus the Daubechies family of scaling functions satisfy this

property.
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EDGE Ft S FORMULATING THE PROBLEM

» We assume My +--- My =m+ 1.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» We assume My +--- My =m+ 1.
» Then we seek ay, ..., am such that

m—A A
> o)+ arm adl(t) = 1™
Jj=0 =1

on [0,1].
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FORMULATING THE PROBLEM
» We assume My +--- My =m+ 1.

» Then we seek ay, ..., am such that
m—A
> ajori(t) + Zaz+m ad(t) =t
j=0
on [0,1].

» Rewriting using the linearly independent 6f;(t) and the definition of
the edge functions gives the following system:

— A
—4 —/
a > > ik +Zae+m_A¢o(r)=
j=0 (=1 k=1-M, =1
Z Z At
=1 k=1—-M,
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» This system can be rewritten in the form Ma = b where

v=1R 0

Here, M has dimension (m+ 1) x (m+ 1), I is the A x A identity
matrix, and Qisan (m— A+ 1) x (m— A+ 1) matrix.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» This system can be rewritten in the form Ma = b where
Q0
M=l7 0]

Here, M has dimension (m+ 1) x (m+ 1), I is the A x A identity
matrix, and Qisan (m— A+ 1) x (m— A+ 1) matrix.

» Certainly if Q is nonsingular, our assertion holds.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

We can further refine Q. If we set

Er=[1fx fix Bx - Took]

then we can write Q as

]
En, 1

E A
L EMa—1
v UNIVERSITY of ST. THOMAS
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» Alemma due to G. Strang says that

J
=3 ()1

J
i=0
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» Alemma due to G. Strang says that

i=0

» We can reformulate this lemma in terms of our rows Ej and the
upper triangular Pascal matrix

Y|

c

|
o OO —
OO = =
- WD W —
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FORMULATING THE PROBLEM
» In terms of the Pascal matrix, Strang’s lemma says

Ely = ELPu == EIPK = ELPY

or

Ef 1 Pg* = ELPA 1 = = B[P, = Ef
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FORMULATING THE PROBLEM
» In terms of the Pascal matrix, Strang’s lemma says

¢ _ p  _ _ rtpk-1 _ tpk
or
{ —k _ 0 p—k+1 _  tp-1_
Exi 1Py =EkPy™ =--=EPy, =E
» Then Q becomes 1
1p—
Ey Py
1pl—M
EqPy
Q=
CCAp1
Eq'Py
Apl—M
A
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» Itis not clear that Q is always nonsingular. It would seem there
needs to be conditions placed on the Ef.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» Itis not clear that Q is always nonsingular. It would seem there
needs to be conditions placed on the Ef.

» Inthe case where My =L >1and M, =1, k=2,..., A, (DGHM,
for example) we can reduce Q to

Eo Py

EPy°

-l
E3Py
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EDGE FUNCTIONS FORMULATING THE PROBLEM

Using the lower triangular Pascal matrix (P, = PZ), we can write Q =

E(} P[j; 1E(; 1 1E6 1
EO Pl; EOPU —1 —1 EO Plj -1
: - : Pl =P | P : Py
L 2L 2L
E}P); E Py E Py
E;
—1
E] (PU _ /)

=P || B (PU1_I>2 Sl=Lu
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» The first matrix is lower triangular with determinant 1 while the
second matrix is upper triangular with determinant Cf&o, C>0.

So if f 5 # 0, our matrix Q is nonsingular in this case.
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EDGE FUNCTIONS FORMULATING THE PROBLEM

» The first matrix is lower triangular with determinant 1 while the
second matrix is upper triangular with determinant Cf&o, C>0.
So if f 5 # 0, our matrix Q is nonsingular in this case.

» This is certainly the case for the DGHM scaling vector as

fo=(1+ \/5)71.
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EDGE Ft S FORMULATING THE PROBLEM

Thank You - Questions?
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