Nonnegative Scaling Vectors on the Interval

Patrick J. Van Fleet

Center for Applied Mathematics
University of St. Thomas
St. Paul, MN USA

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a

 multiresolution analysis of $L^{2}[0,1]$.Project Goal: Construct a nonnegative scaling vector that generates a multiresolution analysis of $L^{2}[0,1]$.

- There are many different constructions:

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a multiresolution analysis of $L^{2}[0,1]$.

- There are many different constructions:
- Dahmen and Micchelli

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a multiresolution analysis of $L^{2}[0,1]$.

- There are many different constructions:
- Dahmen and Micchelli
- Goh, Jiang, and Xia

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a multiresolution analysis of $L^{2}[0,1]$.

- There are many different constructions:
- Dahmen and Micchelli
- Goh, Jiang, and Xia
- Lakey and Pereyra

Joint work with: David Ruch (Denver) and Yongzhi Yang (UST)

Project Goal: Construct a nonnegative scaling vector that generates a multiresolution analysis of $L^{2}[0,1]$.

- There are many different constructions:
- Dahmen and Micchelli
- Goh, Jiang, and Xia
- Lakey and Pereyra
- None of these methods constructive nonnegative scaling vectors Ф.
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Start a given ϕ that generates an MRA for $L^{2}(\mathbb{R})$ and use it to create an MRA for $L^{2}[0,1]$.
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Start a given ϕ that generates an MRA for $L^{2}(\mathbb{R})$ and use it to create an MRA for $L^{2}[0,1]$.
- For $L^{2}[0, \infty)$, we start with $S=\left\{\phi_{n k}(t)\right\}_{n \in \mathbb{Z}, k \geq 0}$. Next introduce a set L of edge functions that:
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Start a given ϕ that generates an MRA for $L^{2}(\mathbb{R})$ and use it to create an MRA for $L^{2}[0,1]$.
- For $L^{2}[0, \infty)$, we start with $S=\left\{\phi_{n k}(t)\right\}_{n \in \mathbb{Z}, k \geq 0}$. Next introduce a set L of edge functions that:
- satisfy a dilation equation,
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Start a given ϕ that generates an MRA for $L^{2}(\mathbb{R})$ and use it to create an MRA for $L^{2}[0,1]$.
- For $L^{2}[0, \infty)$, we start with $S=\left\{\phi_{n k}(t)\right\}_{n \in \mathbb{Z}, k \geq 0}$. Next introduce a set L of edge functions that:
- satisfy a dilation equation,
- reproduce polynomials of the same order reproduced by $\left\{\phi_{n k}\right\}$,
- Y. Meyer and Cohen, Daubechies, Vial produced similar methods for creating MRAs for $L^{2}[0,1]$:
- Start a given ϕ that generates an MRA for $L^{2}(\mathbb{R})$ and use it to create an MRA for $L^{2}[0,1]$.
- For $L^{2}[0, \infty)$, we start with $S=\left\{\phi_{n k}(t)\right\}_{n \in \mathbb{Z}, k \geq 0}$. Next introduce a set L of edge functions that:
- satisfy a dilation equation,
- reproduce polynomials of the same order reproduced by $\left\{\phi_{n k}\right\}$,
- ensures that the set $S \cup L$ is a Riesz basis for $L^{2}[0, \infty)$.
- Gilbert Walter and Xiaoping Shen were interested in constructing nonnegative scaling functions for the purposes of density estimation.
- Gilbert Walter and Xiaoping Shen were interested in constructing nonnegative scaling functions for the purposes of density estimation.
- They modified members of Daubechies orthogonal family to perform the task.
- Gilbert Walter and Xiaoping Shen were interested in constructing nonnegative scaling functions for the purposes of density estimation.
- They modified members of Daubechies orthogonal family to perform the task.
- Start with compactly supported and continuous scaling function ϕ

$$
\phi(t)=\sum_{k=0}^{N} h_{k} \phi(2 t-k)
$$

and assume it generates a Multiresolution Analysis (MRA) for $L^{2}(\mathbb{R})$.

- Gilbert Walter and Xiaoping Shen were interested in constructing nonnegative scaling functions for the purposes of density estimation.
- They modified members of Daubechies orthogonal family to perform the task.
- Start with compactly supported and continuous scaling function ϕ

$$
\phi(t)=\sum_{k=0}^{N} h_{k} \phi(2 t-k)
$$

and assume it generates a Multiresolution Analysis (MRA) for $L^{2}(\mathbb{R})$.

- ϕ and its integer translates form a partition of unity:

$$
\sum_{k} \phi(t-k)=1
$$

- Construct $P_{r}(t), 0<r<1$ as follows:

$$
P_{r}(t)=\sum_{n \in \mathbb{Z}} r^{|n|} \phi(t-n)
$$

- Construct $P_{r}(t), 0<r<1$ as follows:

$$
P_{r}(t)=\sum_{n \in \mathbb{Z}} r^{|n|} \phi(t-n)
$$

- We can compute the Fourier transform of $P_{r}(t)$:

$$
\hat{P}_{r}(\omega)=\frac{1-r^{2}}{1-2 r \cos \omega+r^{2}} \hat{\phi}(\omega)
$$

Walter and Shen were able to prove that there exists $0<r_{0}<1$ such that for $r_{0} \leq r<1$, the following hold for P_{r} :

- $P_{r}(t) \geq 0, \quad P_{r} \in V_{0}$

Walter and Shen were able to prove that there exists $0<r_{0}<1$ such that for $r_{0} \leq r<1$, the following hold for P_{r} :

- $P_{r}(t) \geq 0, \quad P_{r} \in V_{0}$
- P_{r} solves a dilation equation.

$$
P_{r}(t)=\sum_{k} a_{k} P_{r}(2 t-k)
$$

where

$$
a_{k}=\sum_{n} h_{k-2 n} r^{|n|} \frac{1+r^{2}}{1-r^{2}}-\frac{r^{|n|+1}}{1-r^{2}}\left(h_{k-1-2 n}+h_{k+1-2 n}\right)
$$

Walter and Shen were able to prove that there exists $0<r_{0}<1$ such that for $r_{0} \leq r<1$, the following hold for P_{r} :

- $P_{r}(t) \geq 0, \quad P_{r} \in V_{0}$
- P_{r} solves a dilation equation.

$$
P_{r}(t)=\sum_{k} a_{k} P_{r}(2 t-k)
$$

where

$$
a_{k}=\sum_{n} h_{k-2 n} r^{|n|} \frac{1+r^{2}}{1-r^{2}}-\frac{r^{|n|+1}}{1-r^{2}}\left(h_{k-1-2 n}+h_{k+1-2 n}\right)
$$

- $\tilde{P}_{r}(t)=\frac{1}{2 \pi\left(1-r^{2}\right)}\left(\left(1+r^{2}\right) \phi(t)-r(\phi(t-1)+\phi(t+1))\right)$

Walter and Shen were able to prove that there exists $0<r_{0}<1$ such that for $r_{0} \leq r<1$, the following hold for P_{r} :

- $P_{r}(t) \geq 0, \quad P_{r} \in V_{0}$
- P_{r} solves a dilation equation.

$$
P_{r}(t)=\sum_{k} a_{k} P_{r}(2 t-k)
$$

where

$$
a_{k}=\sum_{n} h_{k-2 n} r^{|n|} \frac{1+r^{2}}{1-r^{2}}-\frac{r^{|n|+1}}{1-r^{2}}\left(h_{k-1-2 n}+h_{k+1-2 n}\right)
$$

- $\tilde{P}_{r}(t)=\frac{1}{2 \pi\left(1-r^{2}\right)}\left(\left(1+r^{2}\right) \phi(t)-r(\phi(t-1)+\phi(t+1))\right)$
- P_{r} generates the same MRA for $L^{2}(\mathbb{R})$ as ϕ.

Start with the Daubechies 4-tap orthonormal scaling function $\phi(t)$.

Use $r=-\phi(2)$ to obtain

Note that both orthogonality and compact support are lost.

- Our method is a hybrid of Meyer (edge functions) and Walter, Shen (nonnegative).
- Our method is a hybrid of Meyer (edge functions) and Walter, Shen (nonnegative).
- Use a given scaling vector Φ, compactly supported, to create a nonnegative and compactly supported scaling vector from Φ that generates an MRA for $L^{2}[0,1]$.
- Our method is a hybrid of Meyer (edge functions) and Walter, Shen (nonnegative).
- Use a given scaling vector Φ, compactly supported, to create a nonnegative and compactly supported scaling vector from Φ that generates an MRA for $L^{2}[0,1]$.
- Preserve polynomial accuracy of the original scaling vector Φ.
- Our method is a hybrid of Meyer (edge functions) and Walter, Shen (nonnegative).
- Use a given scaling vector Φ, compactly supported, to create a nonnegative and compactly supported scaling vector from Φ that generates an MRA for $L^{2}[0,1]$.
- Preserve polynomial accuracy of the original scaling vector Φ.
- Try not to create too many edge functions.

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}\right.}(\cdot-k)}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}\right.}(\cdot-k)}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

- $\overline{U_{n \in \mathbb{Z}} V_{n}}=L^{2}(\mathbb{R})$ (density),

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}(\cdot-k)\right.}}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

- $\overline{U_{n \in \mathbb{Z}} V_{n}}=L^{2}(\mathbb{R})$ (density),
- $\cap_{n \in \mathbb{Z}} V_{n}=\{0\}$ (separation),

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}(\cdot-k)\right.}}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

- $\overline{U_{n \in \mathbb{Z}} V_{n}}=L^{2}(\mathbb{R})$ (density),
- $\cap_{n \in \mathbb{Z}} V_{n}=\{0\}$ (separation),
- $f \in V_{n} \Leftrightarrow f\left(2^{-n}\right) \in V_{0}$ (dilation),

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}(\cdot-k)\right.}}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

- $\overline{U_{n \in \mathbb{Z}} V_{n}}=L^{2}(\mathbb{R})$ (density),
- $\cap_{n \in \mathbb{Z}} V_{n}=\{0\}$ (separation),
- $f \in V_{n} \Leftrightarrow f\left(2^{-n}\right) \in V_{0}$ (dilation),
- $f \in V_{n} \Leftrightarrow f(\cdot-k) \in V_{n}$ (translation),

Definition. Let $\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}, \phi^{j} \in L^{2}(\mathbb{R})$ and consider the set

$$
V_{0}={\overline{\left\langle\phi^{j}(\cdot-k)\right.}}_{k \in \mathbb{Z}, \quad j=1, \ldots, A}
$$

We say the nested set of spaces

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

forms a Multiresolution Analysis (MRA) of $L^{2}(\mathbb{R})$ if:

- $\overline{U_{n \in \mathbb{Z}} V_{n}}=L^{2}(\mathbb{R})$ (density),
- $\cap_{n \in \mathbb{Z}} V_{n}=\{0\}$ (separation),
- $f \in V_{n} \Leftrightarrow f\left(2^{-n}\right) \in V_{0}$ (dilation),
- $f \in V_{n} \Leftrightarrow f(\cdot-k) \in V_{n}$ (translation),
- The vector Φ and its integer translates generate a Riesz basis for V_{0}.
- In this case, Φ satisfies a matrix refinement equation

$$
\Phi(t)=\sum_{k} C_{k} \Phi(2 t-k)
$$

Here C_{k} are $A \times A$ matrices.

- In this case, Φ satisfies a matrix refinement equation

$$
\Phi(t)=\sum_{k} C_{k} \Phi(2 t-k)
$$

Here C_{k} are $A \times A$ matrices.

- We further assume that:
- In this case, Φ satisfies a matrix refinement equation

$$
\Phi(t)=\sum_{k} C_{k} \Phi(2 t-k)
$$

Here C_{k} are $A \times A$ matrices.

- We further assume that:
- Each ϕ^{ℓ} is compactly supported on $\left[0, M_{\ell}\right], M_{\ell} \in \mathbb{Z}_{+}$and continuous.
- In this case, Φ satisfies a matrix refinement equation

$$
\Phi(t)=\sum_{k} C_{k} \Phi(2 t-k)
$$

Here C_{k} are $A \times A$ matrices.

- We further assume that:
- Each ϕ^{ℓ} is compactly supported on $\left[0, M_{\ell}\right], M_{\ell} \in \mathbb{Z}_{+}$and continuous.
- There is a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{A}\right)^{T}$ for which

$$
\sum_{\ell=1}^{A} \sum_{k} c_{\ell} \phi^{\ell}(t-k)=\sum_{k} \mathbf{c} \cdot \Phi(t-k)=1
$$

This is the partition of unity condition.

Finally, we assume that Φ has polynomial accuracy m. That is, there exist constants $f_{n k}^{\ell}$ such that for $n=0,1, \ldots, m-1$, we have

$$
t^{n}=\sum_{\ell=1}^{A} \sum_{k} f_{n k}^{\ell} \phi^{\ell}(t-k)=\sum_{k} \mathbf{f}_{n k} \cdot \Phi(t-k)
$$

Note that from the previous slide

$$
1=t^{0}=\sum_{k} \mathbf{c} \cdot \Phi(t-k)=\sum_{k} \mathbf{f}_{0 k} \cdot \Phi(t-k)
$$

so that $\mathbf{c}=\mathbf{f}_{0 k}$ for all $k \in \mathbb{Z}$.

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists multi-scaling functions Φ that form a multiresolution analysis for $L^{2}(\mathbb{R})$ that the ϕ^{i}

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists multi-scaling functions Φ that form a multiresolution analysis for $L^{2}(\mathbb{R})$ that the ϕ^{i}

- are compacted supported,

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists multi-scaling functions Φ that form a multiresolution analysis for $L^{2}(\mathbb{R})$ that the ϕ^{i}

- are compacted supported,
- have polynomial approximation accuracy m,

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists multi-scaling functions Φ that form a multiresolution analysis for $L^{2}(\mathbb{R})$ that the ϕ^{i}

- are compacted supported,
- have polynomial approximation accuracy m,
- are (anti)symmetric,

Theorem. (Donovan, Geronimo, Hardin, Massopust). There exists multi-scaling functions Φ that form a multiresolution analysis for $L^{2}(\mathbb{R})$ that the ϕ^{i}

- are compacted supported,
- have polynomial approximation accuracy m,
- are (anti)symmetric,
- generate an orthonormal basis for V_{0}.

Example - DGHM. (Donovan, Geronimo, Hardin, Massopust) Take $A=2$, with the 4-term matrix refinement equation

$$
\Phi(t)=\sum_{k=0}^{3} C_{k} \Phi(2 t-k)
$$

where

$$
\begin{array}{ll}
C_{0}=\left[\begin{array}{cc}
3 / 5 & 4 \sqrt{2} / 5 \\
-\sqrt{2} / 20 & -3 / 10
\end{array}\right], & C_{1}=\left[\begin{array}{cc}
3 / 5 & 0 \\
9 \sqrt{2} / 20 & 1
\end{array}\right] \\
C_{2}=\left[\begin{array}{cc}
0 & 0 \\
9 \sqrt{2} / 20 & -3 / 10
\end{array}\right], & C_{3}=\left[\begin{array}{cc}
0 & 0 \\
-\sqrt{2} / 20 & 0
\end{array}\right]
\end{array}
$$

- $\phi^{1}(t)$ and $\phi^{2}(t)$ are both continuous and along with their integer translates, form an orthonormal basis for V_{0}.
- $\phi^{1}(t)$ and $\phi^{2}(t)$ are both continuous and along with their integer translates, form an orthonormal basis for V_{0}.
$-\operatorname{supp}\left(\phi^{1}\right)=[0,1]$ and $\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- $\phi^{1}(t)$ and $\phi^{2}(t)$ are both continuous and along with their integer translates, form an orthonormal basis for V_{0}.
- $\operatorname{supp}\left(\phi^{1}\right)=[0,1]$ and $\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- Achieve polynomial accuracy $m=2$.
- $\phi^{1}(t)$ and $\phi^{2}(t)$ are both continuous and along with their integer translates, form an orthonormal basis for V_{0}.
- $\operatorname{supp}\left(\phi^{1}\right)=[0,1]$ and $\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- Achieve polynomial accuracy $m=2$.
- Form a partition of unity with $c_{1}=(1+\sqrt{2})^{-1}$ and $c_{2}=\sqrt{2} c_{1}$.
- $\phi^{1}(t)$ and $\phi^{2}(t)$ are both continuous and along with their integer translates, form an orthonormal basis for V_{0}.
- $\operatorname{supp}\left(\phi^{1}\right)=[0,1]$ and $\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- Achieve polynomial accuracy $m=2$.
- Form a partition of unity with $c_{1}=(1+\sqrt{2})^{-1}$ and $c_{2}=\sqrt{2} c_{1}$.
- $\phi^{1}(t) \geq 0, t \in \mathbb{R}$.

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

- Φ and its translates are not orthogonal.

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

- Φ and its translates are not orthogonal.
- Φ is continuous and has approximation order $m=3$.

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

- Φ and its translates are not orthogonal.
- Φ is continuous and has approximation order $m=3$.
$-\operatorname{supp}\left(\phi^{1}\right)=\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

- Φ and its translates are not orthogonal.
- Φ is continuous and has approximation order $m=3$.
- $\operatorname{supp}\left(\phi^{1}\right)=\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- Partition of unity: $c_{1}=0$ and $c_{2}=1$.

- The results of Walter and Shen can be extended to scaling vectors Φ with only a modest condition on the partition of unity coefficients c of Φ.
- The results of Walter and Shen can be extended to scaling vectors Φ with only a modest condition on the partition of unity coefficients c of Φ.
- Moreover, the construction can be altered so that compact support can be retained - that's the contribution of using scaling vectors.

Let $\Phi=\left(\phi^{1}, \ldots, \phi^{A}\right)$. We say ϕ satisfies Condition B if for some $j \in\{1,2, \ldots, A\}, \phi^{j}(t) \geq 0$ for $t \in \mathbb{R}$ and there exist finite index sets Λ_{i} and constants $c_{i k}$ for $i \neq j$ such that:
(B1) $\tilde{\phi}^{i}(t):=\phi^{i}(t)+\sum_{k \in \Lambda_{i}} c_{i k} \phi^{j}(t-k) \geq 0, t \in \mathbb{R}$.
(B2) $d_{j}:=c_{j}-\sum_{i \neq j} \sum_{k \in \Lambda_{i}} c_{i} c_{i k} \geq 0$,
(B3) $c_{i} \geq 0$, for $i \neq j$.
Here $\mathbf{c}=\left(c_{1}, \ldots, c_{A}\right)^{T}$ are the coefficients that form the partition of unity for Φ :

$$
1=\sum_{k} \mathbf{c} \cdot \Phi(t-k)
$$

Theorem. (D. Ruch, PVF) Suppose the scaling vector

$$
\Phi=\left(\phi^{1}, \phi^{2}, \ldots, \phi^{A}\right)^{T}
$$

is bounded, compactly supported, has polynomial accuracy $m \geq 1$, and satisfies Condition B. Then the nonnegative scaling vector

$$
\tilde{\Phi}=\left(\tilde{\phi}^{1}, \ldots, \tilde{\phi}^{j-1}, \phi^{j}, \tilde{\phi}^{j+1}, \ldots \tilde{\phi}^{A}\right)^{T}
$$

is a bounded, compactly supported scaling vector with accuracy $m \geq 1$ that generates the same MRA as Φ.

Outline of Proof. The proof is constructive. WLOG assume $j=A$.

Outline of Proof. The proof is constructive. WLOG assume $j=A$.

- Build $M(z)$ to be an upper triangular matrix, with ones on the main diagonal and $\sum_{k \in \Lambda_{i}} c_{i k} z^{k}$ in the i, j position $(i<j)$. Here $z=e^{-i \omega}$.

Outline of Proof. The proof is constructive. WLOG assume $j=A$.

- Build $M(z)$ to be an upper triangular matrix, with ones on the main diagonal and $\sum_{k \in \Lambda_{i}} c_{i k} z^{k}$ in the i, j position $(i<j)$. Here $z=e^{-i \omega}$.
- The vector that works is

$$
\tilde{\Phi}=\mathcal{F}^{-1}(M(z) \hat{\Phi}(z))
$$

Example. Recall the DGHM example.

- $\phi^{1}(t) \geq 0$.
- $\operatorname{supp}\left(\phi^{1}\right)=[0,1]$ and $\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- ϕ^{1}, ϕ^{2} are continuous and have polynomial accuracy $m=2$.
- the partition of unity coefficients are

$$
c_{1}=(1+\sqrt{2})^{-1} \quad \text { and } \quad c_{2}=\sqrt{2} c_{1} .
$$

We take the index set $\Lambda_{2}=\{0,1\}$ with $c_{20}=c_{21}=\frac{1}{2}$ so that

$$
\tilde{\phi}^{2}=\phi^{2}(t)+\frac{1}{2} \phi^{1}(t)+\frac{1}{2} \phi^{1}(t-1)
$$

The new partition of unity coefficients are

$$
\begin{aligned}
& d_{1}=c_{1}>0 \\
& d_{2}=c_{2}-c_{1}\left(c_{20}+c_{21}\right)>0
\end{aligned}
$$

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

where

$$
C_{0}=\frac{1}{20}\left[\begin{array}{ll}
-7 & 15 \\
-4 & 10
\end{array}\right], C_{1}=\frac{1}{20}\left[\begin{array}{rr}
10 & 0 \\
0 & 20
\end{array}\right], C_{2}=\frac{1}{20}\left[\begin{array}{rr}
-7 & -15 \\
4 & 10
\end{array}\right]
$$

- Φ and its translates are not orthogonal.
- Φ is continuous and has approximation order $m=3$.
- $\operatorname{supp}\left(\phi^{1}\right)=\operatorname{supp}\left(\phi^{2}\right)=[0,2]$.
- Partition of unity: $c_{1}=0$ and $c_{2}=1$.

We take the index set $\Lambda_{1}=\{0\}$ with $c_{10}=1.6$ so that

$$
\tilde{\phi}^{1}=\phi^{1}(t)+1.6 \phi^{2}(t)
$$

The new partition of unity coefficients are

$$
\begin{aligned}
& d_{1}=c_{1}=0 \\
& d_{2}=c_{2}-c_{1} c_{10}=c_{2}>0
\end{aligned}
$$

Suppose $\Phi(t)=\left(\phi^{1}(t), \phi^{2}(t), \ldots, \phi^{A}(t)\right)^{T}$

Suppose $\Phi(t)=\left(\phi^{1}(t), \phi^{2}(t), \ldots, \phi^{A}(t)\right)^{T}$

- Compact support: $\operatorname{supp}\left(\phi^{i}\right)=\left[0, M_{i}\right], M_{i} \in \mathbb{Z}_{+}$.

Suppose $\Phi(t)=\left(\phi^{1}(t), \phi^{2}(t), \ldots, \phi^{A}(t)\right)^{T}$

- Compact support: $\operatorname{supp}\left(\phi^{i}\right)=\left[0, M_{i}\right], M_{i} \in \mathbb{Z}_{+}$.
- Φ satisfies a finite-length matrix refinement equation:

$$
\Phi(t)=\sum_{k=0}^{N} C_{k} \Phi(2 t-k)
$$

Suppose $\Phi(t)=\left(\phi^{1}(t), \phi^{2}(t), \ldots, \phi^{A}(t)\right)^{T}$

- Compact support: $\operatorname{supp}\left(\phi^{i}\right)=\left[0, M_{i}\right], M_{i} \in \mathbb{Z}_{+}$.
- Φ satisfies a finite-length matrix refinement equation:

$$
\Phi(t)=\sum_{k=0}^{N} C_{k} \Phi(2 t-k)
$$

- Each $\phi^{i}(t)$ is continuous and Φ achieves polynomial accuracy $m \geq 1$. That is, for $n=0, \ldots, m-1$ we can write

$$
t^{n}=\sum_{\ell=1}^{A} \sum_{k} f_{n k}^{\ell} \phi^{\ell}(t-k)=\sum_{k} \mathbf{f}_{n k} \cdot \Phi(t-k)
$$

Suppose $\Phi(t)=\left(\phi^{1}(t), \phi^{2}(t), \ldots, \phi^{A}(t)\right)^{T}$

- Compact support: $\operatorname{supp}\left(\phi^{i}\right)=\left[0, M_{i}\right], M_{i} \in \mathbb{Z}_{+}$.
- Φ satisfies a finite-length matrix refinement equation:

$$
\Phi(t)=\sum_{k=0}^{N} C_{k} \Phi(2 t-k)
$$

- Each $\phi^{i}(t)$ is continuous and Φ achieves polynomial accuracy $m \geq 1$. That is, for $n=0, \ldots, m-1$ we can write

$$
t^{n}=\sum_{\ell=1}^{A} \sum_{k} f_{n k}^{\ell} \phi^{\ell}(t-k)=\sum_{k} \mathbf{f}_{n k} \cdot \Phi(t-k)
$$

- Φ generates an MRA for $L^{2}(\mathbb{R})$.
- We will construct the left edge functions for $V_{0}[0, \infty)$. The right edge functions follow analogously.
- We will construct the left edge functions for $V_{0}[0, \infty)$. The right edge functions follow analogously.
- For $\ell=1, \ldots, A$, suppose that the set S of non-zero functions

$$
S=\left\{\bar{\phi}_{k}^{\ell}(t)\right\}_{k \in \mathbb{Z}}
$$

where

$$
\bar{\phi}_{k}^{\ell}(t)=\left.\phi^{\ell}(t-k)\right|_{[0, \infty)}
$$

are linearly independent and let $n(S)$ be the number of elements in S.

- We will construct the left edge functions for $V_{0}[0, \infty)$. The right edge functions follow analogously.
- For $\ell=1, \ldots, A$, suppose that the set S of non-zero functions

$$
S=\left\{\bar{\phi}_{k}^{\ell}(t)\right\}_{k \in \mathbb{Z}}
$$

where

$$
\bar{\phi}_{k}^{\ell}(t)=\left.\phi^{\ell}(t-k)\right|_{[0, \infty)}
$$

are linearly independent and let $n(S)$ be the number of elements in S.

- S is simply the right shifts of ϕ^{ℓ} and the left shifts for $k=1, \ldots, M_{\ell}-1$. Here, $\left[0, M_{\ell}\right]$ is the support of ϕ^{ℓ}.

We define the left edge functions $\phi_{L, n}$ by

$$
\phi_{L, n}(t)=\sum_{\ell=1}^{A} \sum_{k=1-M_{\ell}}^{0} \mathbf{f}_{n k}^{\ell} \bar{\phi}_{k}^{\ell}(t)
$$

We have

$$
\phi_{L, n}(t)=t^{n} \quad \text { on } \quad[0,1]
$$

We are building the edge function by simply taking those $\bar{\phi}_{k}^{\ell}(t)$ that contribute to t^{n} on $[0,1]$.

Proposition. The $\phi_{L, n}(t)$ satisfy a matrix refinement equation.

The proof is straightforward and you end up with

$$
\phi^{L, n}(t)=2^{-n} \phi_{L, n}(2 t)+\sum_{j=2-2 M_{n}}^{N} \mathbf{q}_{n j} \Phi(2 t-j)
$$

for each $n=0,1, \ldots, m-1$, where

$$
\mathbf{q}_{n j}= \begin{cases}\sum_{k=1-M_{n}}^{0} \mathbf{f}_{n k} C_{j-2 k}-2^{-n} \mathbf{f}_{n j}, & j \in\left\{1-M_{n}, \ldots, 0\right\} \\ \sum_{k=1-M_{n}}^{0} \mathbf{f}_{n k} C_{j-2 k}, & j \in\left\{2-2 M_{n}, \ldots,-M_{n}\right\} \cup\{1, \ldots, N\}\end{cases}
$$

Example. Recall the DGHM example.

- $\phi^{1}(t) \geq 0, M_{1}=1, M_{2}=2$.
- ϕ^{1}, ϕ^{2} are continuous and have polynomial accuracy $m=2$.
- the partition of unity coefficients are

$$
\mathbf{f}_{00}=\left(\frac{1}{1+\sqrt{2}}, \frac{\sqrt{2}}{1+\sqrt{2}}\right)^{T}
$$

- $S=\left\{\phi^{1}(t), \bar{\phi}^{2}(t), \bar{\phi}^{2}(t+1)\right\}$.

We can easily write down the formula for the edge function (noting that $f_{0, k}^{\ell}=f_{0,0}^{\ell}$ for all $k \in \mathbb{Z}$):

$$
\phi_{L, 0}(t)=f_{0,0}^{1} \phi^{1}(t)+f_{0,0}^{2}\left(\bar{\phi}^{2}(t)+\bar{\phi}^{2}(t+1)\right)
$$

If we want a nonnegative edge function, then we need to use the scaling vector:

Here,

$$
\mathbf{f}_{00}=\left(c_{1}, c_{2}-c_{1}\right)^{T}=\left(\frac{1}{1+\sqrt{2}}, 3-2 \sqrt{2}\right)^{T}
$$

The resulting edge function:

Example. G. Plonka and V. Strela used a two-scale similarity transform in the frequency domain to construct the scaling vector

$$
\Phi(t)=\sum_{k=0}^{2} C_{k} \cdot \Phi(2 t-k)
$$

- Φ and its translates are not orthogonal.
- Φ is continuous and has approximation order $m=3$.
- $M_{1}=M_{2}=2$.
- Partition of unity: $\mathbf{f}_{0,0}=(0,1)^{T}$.
- We also need $\mathbf{f}_{1,0}=\left(\frac{1}{6}, 1\right)^{T}$.

We use the scaling vector

We can write down the (nonnegative!) edge functions:

$$
\phi_{L, 0}(t)=\bar{\phi}^{1}(t)+\bar{\phi}^{1}(t+1)
$$

$$
\phi_{L, 1}(t)=\bar{\phi}^{1}(t)-\frac{1}{6}\left(\bar{\phi}^{2}(t)+\bar{\phi}^{2}(t+1)\right)
$$

Theorem. (D. Ruch, PVF) For some index set B, let $\left\{L_{i}\right\}$ be a finite set of left edge functions with support $\left[0, \delta_{i}\right]$ and assume that $\left\{L_{i}, \phi^{\ell}(\cdot-k)\right\}_{i, \ell, k \geq 0}$ is a linearly independent set. Then $\left\{L_{i}\left(2^{j}\right), \phi^{\ell}\left(2^{j} \cdot-k\right)\right\}_{i, \ell, k \geq 0}$ is a Riesz basis for V_{j}, where $L^{2}[0, \infty)=\overline{U_{j} V_{j}}$.

- The DGHM scaling vector has polynomial accuracy $m=2$, yet we only constructed the edge function $\phi_{L, 0}(t)(1$ on $[0,1]$.
- The DGHM scaling vector has polynomial accuracy $m=2$, yet we only constructed the edge function $\phi_{L, 0}(t)(1$ on $[0,1]$.
- The Plonka/Strela scaling vector has polynomial accuracy $m=3$, yet we only constructed the edge functions $\phi_{L, 0}(t)(1$ on $[0,1])$ and $\phi_{L, 1}(t)(t$ on $[0,1])$.
- The DGHM scaling vector has polynomial accuracy $m=2$, yet we only constructed the edge function $\phi_{L, 0}(t)(1$ on $[0,1]$.
- The Plonka/Strela scaling vector has polynomial accuracy $m=3$, yet we only constructed the edge functions $\phi_{L, 0}(t)(1$ on $[0,1])$ and $\phi_{L, 1}(t)(t$ on $[0,1])$.
- In both cases it seems we are missing an edge function - $\phi_{L, 1}(t)$ for DGHM and $\phi_{L, 2}(t)$ for Plonka/Strela.
- The DGHM scaling vector has polynomial accuracy $m=2$, yet we only constructed the edge function $\phi_{L, 0}(t)(1$ on $[0,1]$.
- The Plonka/Strela scaling vector has polynomial accuracy $m=3$, yet we only constructed the edge functions $\phi_{L, 0}(t)(1$ on $[0,1])$ and $\phi_{L, 1}(t)(t$ on $[0,1])$.
- In both cases it seems we are missing an edge function - $\phi_{L, 1}(t)$ for DGHM and $\phi_{L, 2}(t)$ for Plonka/Strela.
- But it turns out that we don't need them - in both cases we were able to find constants α_{j} so that

$$
\sum_{j=0}^{m-2} \alpha_{j} \phi_{L, j}(t)+\sum_{j=1}^{2} \alpha_{j}+m-2 \bar{\phi}^{j}(t-k)=t^{m-1}
$$

on $[0,1]$. (Here, $m=2$ for DGHM and $m=3$ for Plonka/Strela).

- It is natural to ask if this holds in a more general setting.
- It is natural to ask if this holds in a more general setting.
- If so, then we would only need $n(S)-\mathcal{A}$ edge functions to reproduce t^{m-1} on $[0,1]$.
- It is natural to ask if this holds in a more general setting.
- If so, then we would only need $n(S)-A$ edge functions to reproduce t^{m-1} on $[0,1]$.
- In the case where the number of scaling vectors is $A=2$, we have $n(S)-A=m-1$. Meyer's and Daubechies' constructions both required m edge functions.
- It is natural to ask if this holds in a more general setting.
- If so, then we would only need $n(S)-A$ edge functions to reproduce t^{m-1} on $[0,1]$.
- In the case where the number of scaling vectors is $A=2$, we have $n(S)-A=m-1$. Meyer's and Daubechies' constructions both required m edge functions.
- Important Note: We are assuming the total support of the scaling vector, $M_{1}+\cdots+M_{A}=m+1$. All our example scaling vectors plus the Daubechies family of scaling functions satisfy this property.
- We assume $M_{1}+\cdots M_{A}=m+1$.
- We assume $M_{1}+\cdots M_{A}=m+1$.
- Then we seek $\alpha_{0}, \ldots, \alpha_{m}$ such that

$$
\sum_{j=0}^{m-A} \alpha_{j} \phi_{L, j}(t)+\sum_{\ell=1}^{A} \alpha_{\ell+m-A} \phi^{j}(t)=t^{m-1}
$$

on $[0,1]$.

- We assume $M_{1}+\cdots M_{A}=m+1$.
- Then we seek $\alpha_{0}, \ldots, \alpha_{m}$ such that

$$
\sum_{j=0}^{m-A} \alpha_{j} \phi_{L, j}(t)+\sum_{\ell=1}^{A} \alpha_{\ell+m-A} \phi^{j}(t)=t^{m-1}
$$

on $[0,1]$.

- Rewriting using the linearly independent $\bar{\phi}_{k}^{\ell}(t)$ and the definition of the edge functions gives the following system:

$$
\begin{array}{r}
\sum_{j=0}^{m-A} \alpha_{j}\left[\sum_{\ell=1}^{A} \sum_{k=1-M_{\ell}}^{0} f_{j, k}^{\ell} \bar{\phi}_{k}^{\ell}(t)\right] \\
\sum_{\ell=1}^{A} \\
\sum_{\ell=1-M_{\ell}}^{0} \alpha_{\ell+m-A} \bar{\phi}_{0}^{\ell}(t)=
\end{array}
$$

- This system can be rewritten in the form $\mathbf{M \alpha}=\mathbf{b}$ where

$$
M=\left[\begin{array}{ll}
Q & 0 \\
R & I
\end{array}\right]
$$

Here, M has dimension $(m+1) \times(m+1), I$ is the $A \times A$ identity matrix, and Q is an $(m-A+1) \times(m-A+1)$ matrix.

- This system can be rewritten in the form $\mathbf{M} \alpha=\mathbf{b}$ where

$$
M=\left[\begin{array}{ll}
Q & 0 \\
R & I
\end{array}\right]
$$

Here, M has dimension $(m+1) \times(m+1), I$ is the $A \times A$ identity matrix, and Q is an $(m-A+1) \times(m-A+1)$ matrix.

- Certainly if Q is nonsingular, our assertion holds.

We can further refine Q. If we set

$$
E_{k}^{\ell}=\left[\begin{array}{lllll}
f_{0, k}^{\ell} & f_{1, k}^{\ell} & f_{2, k}^{\ell} & \cdots & f_{m-2, k}^{\ell}
\end{array}\right]
$$

then we can write Q as

$$
Q=\left[\begin{array}{c}
E_{1}^{1} \\
\vdots \\
E_{M_{1}-1}^{1} \\
\hline \vdots \\
\hline E_{1}^{A} \\
\vdots \\
E_{M_{A-1}}^{A}
\end{array}\right]
$$

- A lemma due to G. Strang says that

$$
f_{j, k+1}^{\ell}=\sum_{i=0}^{j}\binom{j}{i} f_{i, j}^{\ell}
$$

- A lemma due to G. Strang says that

$$
f_{j, k+1}^{\ell}=\sum_{i=0}^{j}\binom{j}{i} f_{i, j}^{\ell}
$$

- We can reformulate this lemma in terms of our rows E_{k}^{ℓ} and the upper triangular Pascal matrix

$$
P_{U}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & \cdots \\
0 & 1 & 2 & 3 & \cdots \\
0 & 0 & 1 & 3 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
& & \vdots & &
\end{array}\right]
$$

- In terms of the Pascal matrix, Strang's lemma says

$$
E_{k+1}^{\ell}=E_{k}^{\ell} P_{U}=\cdots=E_{1}^{\ell} P_{U}^{k-1}=E_{0}^{\ell} P_{U}^{k}
$$

or

$$
E_{k+1}^{\ell} P_{U}^{-k}=E_{k}^{\ell} P_{U}^{-k+1}=\cdots=E_{1}^{\ell} P_{U}^{-1}=E_{0}^{\ell}
$$

- In terms of the Pascal matrix, Strang's lemma says

$$
E_{k+1}^{\ell}=E_{k}^{\ell} P_{U}=\cdots=E_{1}^{\ell} P_{U}^{k-1}=E_{0}^{\ell} P_{U}^{k}
$$

or

$$
E_{k+1}^{\ell} P_{U}^{-k}=E_{k}^{\ell} P_{U}^{-k+1}=\cdots=E_{1}^{\ell} P_{U}^{-1}=E_{0}^{\ell}
$$

- Then Q becomes

$$
Q=\left[\begin{array}{c}
E_{0}^{1} P_{U}^{-1} \\
\vdots \\
E_{0}^{1} P_{U}^{1-M_{1}} \\
\vdots \\
\frac{E_{0}^{A} P_{U}^{-1}}{\vdots} \\
E_{0}^{A} P_{U}^{1-M_{1}}
\end{array}\right]
$$

- It is not clear that Q is always nonsingular. It would seem there needs to be conditions placed on the E_{0}^{ℓ}.
- It is not clear that Q is always nonsingular. It would seem there needs to be conditions placed on the E_{0}^{ℓ}.
- In the case where $M_{1}=L>1$ and $M_{k}=1, k=2, \ldots, A$, (DGHM, for example) we can reduce Q to

$$
Q=\left[\begin{array}{c}
E_{0}^{1} P_{U}^{-1} \\
E_{0}^{1} P_{U}^{-2} \\
\vdots \\
E_{0}^{1} P_{U}^{1-L}
\end{array}\right]
$$

Using the lower triangular Pascal matrix $\left(P_{L}=P_{U}^{T}\right)$, we can write $Q=$

$$
\begin{aligned}
{\left[\begin{array}{c}
E_{0}^{1} P_{U}^{-1} \\
E_{0}^{1} P_{U}^{-2} \\
\vdots \\
E_{0}^{1} P_{U}^{1-L}
\end{array}\right]=} & {\left[\begin{array}{c}
E_{0}^{1} \\
E_{0}^{1} P_{U}^{-1} \\
\vdots \\
E_{0}^{1} P_{U}^{2-L}
\end{array}\right] P_{U}^{-1}=P_{L}\left(P_{L}^{-1}\left[\begin{array}{c}
E_{0}^{1} \\
E_{0}^{1} P_{U}^{-1} \\
\vdots \\
E_{0}^{1} P_{U}^{2-L}
\end{array}\right] P_{U}^{-1}\right) } \\
= & \left(\left[\begin{array}{c}
E_{0}^{1} \\
E_{0}^{1}\left(P_{U}^{-1}-I\right) \\
E_{0}^{1}\left(P_{U}^{-1}-I\right)^{2} \\
\vdots \\
E_{0}^{1}\left(P_{U}^{-1}-I\right)^{L-2}
\end{array}\right] P_{U}^{-1}\right)=L \cdot U
\end{aligned}
$$

- The first matrix is lower triangular with determinant 1 while the second matrix is upper triangular with determinant $C f_{0,0}^{1}, C>0$. So if $f_{0,0}^{1} \neq 0$, our matrix Q is nonsingular in this case.
- The first matrix is lower triangular with determinant 1 while the second matrix is upper triangular with determinant $C f_{0,0}^{1}, C>0$. So if $f_{0,0}^{1} \neq 0$, our matrix Q is nonsingular in this case.
- This is certainly the case for the DGHM scaling vector as
$f_{0,0}^{1}=(1+\sqrt{2})^{-1}$.

Thank You - Questions?

