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Classical	  Sampling	  Theorem	
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*  Whittaker (1915), Kotelnikov (1933), Someya 
(1948), and Shannon (1948) 



Nyquist	  Interval	
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cωcω−

Fourier Transform	

cωcω−

Data Acquisition 
Data Amount 
Computational Cost 
Hardware Cost 



Surface	  Profiling	  by	  WLI	
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m]5.9[m]5.9[pixel][1 µµ ×= http://www.scn.tv/user/torayins/SP-500.html	

WLI (White-Light Interferometry):  
Technique for surface profiling of semiconductors, LCD, 
Plastic films, etc… 



White-‐Light	  Interferometer	
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White-‐Light	  Interferometer	
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White-‐Light	  Interferogram	
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Nyquist	  Sampling	  for	  WLI	
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mµ

mµ24.0=Δ

Caber (1993)	pz



Bandlimitation	  of	  WLI	

ll k2=ω uu k2=ωuω− lω−

)(ˆ ωf

Bandlimitation of lowpass type: Nyquist Int.	
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Bandlimitation	  of	  WLI	

ll k2=ω uu k2=ωuω− lω−

)(ˆ ωf

Bandlimitation of Bandpass Type⇒Kohlenberg (1953)	
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Bandlimitation of lowpass type: Nyquist Int.	



Interval	  of	  Our	  Algorithm	
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 wider) times14  to(6
  425.1 mµ=Δ

pz Hirabayashi et al. (2002)	



Surface	  Profiler	  SP500	
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http://www.scn.tv/user/torayins/SP-500.html	

Toray Engineering, Co. Ltd.	



New	  Class	  of	  Signals	
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* Introduction of new class of signals 
* As an extension of bandlimited signals 

* Sampling and Reconstruction 
* Noiseless case 
* Noisy case 

* Application 
* Compression of ECG signals 
* Line-edge extraction 

Outline	
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Extension	  of	  Classical	  Samp.	  Th.	
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f (t) = 2ωc
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s(t) :  given function with FT ŝ(ω)



Rate	  of	  Innovation	

Rate of innovation: ρ = lim
τ→∞

1
τ
Cf −τ / 2,τ / 2( )

f t( ) = ck s t − tk( )
k=−∞

∞

∑ s(t) :  given function

Unknown parameters: tk,ck( )

Signals with Finite Rate of Innovation 

Vetterli et al. (2002)	
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Cf ta, tb( ) = number of tk ∈ ta, tb[ ]  & corresponding ck

If ρ <∞,  f (t) is called



More	  General	  Case	

Rate of innovation: ρ = lim
τ→∞

1
τ
Cf −τ / 2,τ / 2( )

f t( ) = ck,r sr t − tk( )
r=0

R−1

∑
k=−∞

∞

∑ sr (t) :  given function

Unknown parameters: tk,ck,r( )

Signals with Finite Rate of Innovation 

Vetterli et al. (2002)	
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Cf ta, tb( ) = number of tk ∈ ta, tb[ ]  & corresponding ck,r

If ρ <∞,  f (t) is called



Local	  Rate	  of	  Innovation	
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ρ(t) = 1
τ
Cf t −τ / 2, t +τ / 2( ).

For a fixed τ ,  a local rate of innovation at time t  
is defined by

ρ =max
t
ρ(t).

Then, a local rate of innovation is defined by



Periodic	  Signals	  with	  FRI	
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Rate of innovation: ρ = 2K
τ

f0 (t) = cks(t − tk )
k=0

K−1

∑

f (t)
f0 (t)

(Vetterli et al.,2002)	

0 τ



Echo	  Imaging	

23	

Probe	

Echo	

Echo from A	Intensity	 Echo from B	

t0 t1
rk = vtk / 2

v =1,530m / s



Neuron	  Pulses	
24	



Stream	  of	  Diracs	
25	

f t( ) = ck δ t − tk( )
k=−∞

∞

∑ ,

The most important signal with FRI is	

g(t) = (s∗ f ) t( ) = ck s t − tk( )
k=−∞

∞

∑ .

ĝ(ω) = ŝ ω( ) f̂ ω( )

This is because the convolution generates	

where δ(t − tk )φ(t)dt
−∞

∞

∫ = φ(tk ).



Stream	  of	  Derivative	  of	  Diracs	
26	

f t( ) = ck,r δ
(r ) t − tk( )

r=0

R−1

∑
k=−∞

∞

∑

g(t) = (s∗ f ) t( ) = (−1)r ck,r s
(r ) t − tk( )

r=0

R−1

∑
k=−∞

∞

∑

δ (r ) t − tk( )φ(t)dt = (−1)r
−∞

∞

∫ φ (r ) (tk )

: special case of f t( ) = ck,r sr t − tk( )
r=0

R−1

∑
k=−∞

∞

∑  with sr (t) = s
(r ) (t).



Two	  Types	  of	  Sparsity	
27	

* Discrete case (Compressed sensing): 

* Continuous case (FRI theory): 

	

DCT, Wavelet, etc	

deconvolution	

Stream of Diracs	

Sparse vector	



* Introduction of new class of signals 
* As an extension of bandlimited signals 

* Sampling and Reconstruction 
* Noiseless case 
* Noisy case 

* Application 
* Compression of ECG signals 
* Line-edge extraction 

Outline	
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Periodic	  Stream	  of	  Diracs	
29	

f0 t( ) = ck δ t − tk( )
k=0

K−1

∑

Given： Unknown： K,τ tk ,ck

0 τ0t 1t 2t

c0

c1

c2 3=K

Rate of Innovation τρ /2K=



Support Number	  of	  pulse

Sinc	  (Vetterli	  et	  al.,	  2002) Infinite >	  10

Spline	  (Dragotti	  et	  al.,	  2007) Finite <10

Sum	  of	  Sinc	  (Tur	  et	  al.,	  2011) Finite >10

Sampling	  Filter	
30	

Sampling	  
filter	  	  	  	  	  a

Sampling	

(non-bandlimited)	

f (t)
f (t)

dn = f (t),ψ(t − nT ) = f (t)ψ(t − nT )dt
−∞

∞

∫

dn

Proposed sampling filters	

ψ(t)

T = τ / N

(n = 0,...,N −1)



Sinc	  Sampling	  Filter	
31	

Sampling	  
filter	  	  	  	  	  a

Sampling	

(non-bandlimited)	

f (t)
f (t)

dn = f (t),ψ(t − nT ) = f (t)ψ(t − nT )dt
−∞

∞

∫

dnψ(t)

T = τ / N

(n = 0,...,N −1)

ψ(t) = Bsinc(Bt), where B ≥ ρ = 2K
τ



Sinc	  Samples	
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dn = f (t)ψ(t − nT )dt
−∞

∞

∫

= f0 (t − k 'τ )
k '=−∞

∞

∑
%
&
'

(
)
*
Bsinc(t − nT )dt

−∞

∞

∫

= f0 (t)
k '=−∞

∞

∑ Bsinc(t − nT + k 'τ )
%
&
'

(
)
*
dt

−∞

∞

∫

= f0 (t) 1
τ

exp −i2pπ (t − nT )
τp=−P

P

∑
%
&
+

'+

(
)
+

*+
dt

0

τ

∫

=
1
τ

f0 (t)exp −i2pπ t
τ

dt
0

τ

∫
%
&
'

(
)
*

Fourier coefficient of f (t )
  

exp i2pnπ
Np=−P

P

∑

P = Bτ
2

!

"!
#

$#
≤
Bτ
2

&

'
(

)

*
+

Poisson Sum Form.	



Sinc	  Samples	  vs.	  Fourier	  Coef.	
33	

dn = d̂pexp
i2pnπ
N
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%
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p=−P

P

∑

d̂p =
1
N

dnexp −
i2pnπ
N

"

#
$

%

&
'

n=0

N−1

∑

DFT	

N ≥ 2P +1



Fourier	  Coefficients	
34	

d̂p =
1
τ

f0 (t)exp
−i2pπ t
τ

dt
0

τ

∫

=
1
τ

ckδ(t − tk
k=0

K−1

∑ )
$
%
&

'
(
)
exp −i2pπ t

τ
dt

0

τ

∫

=
1
τ

ckexp
−i2pπ tk

τk=0

K−1

∑

=
1
τ

ckuk
p

k=0

K−1

∑ uk = exp
−i2pπ tk

τ



d̂p = ckuk
p

k=0

K−1

∑

Sinc	  Sampling	

ＤＦＴdn

Cf) Spectral Estimation, Direction of Arrival (DoA) 

(uk = e
−i2π tk /τ )

Problem	   FRI	  theory Spectral DoA
Parameters Time	  delay Frequency Direction

K #	  of	  pulse #	  of	  component #	  of	  object
Sampling ？ Nyquist Nyquist
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a∗ d̂( )p = aqd̂p−q
q=0

1

∑

= a0d̂p + a1d̂p−1
= c0u0

p + (−u0 )c0u0
p−1

= 0

Annihilation	  in	  case	  of	  K=1	
36	

d̂−P = c0u0
−P

d̂−P+1 = c0u0
−P+1



d̂0 = c0


d̂P−1 = c0u0
P−1

d̂P = c0u0
P

(u0 = e
−i2π t0 /τ )

Filter:	
Sequence of Fourier Coef.	

Convolution:	

a = [a0,a1]= [1,−u0 ]



a = [a0,a1,a2 ]
= [1,−(u0 +u1),u0u1]
= [1,−u0 ]∗[1,−u1]

d̂−P = c0u0
−P + c1u1

−P

d̂−P+1 = c0u0
−P+1 + c1u1

−P+1



d̂0 = c0 + c1


d̂P−1 = c0u0
P−1 + c1u1

P−1

d̂P = c0u0
P + c1u1

P

Annihilation	  in	  case	  of	  K=2	
37	

a∗ d̂( )p = a0d̂p + a1d̂p−1 + a2d̂p−2
= c0u0

p (1−u0z
−1)(1−u1z

−1)
z=u0

+c1u1
p (1−u0z

−1)(1−u1z
−1)

z=u1

Filter:	Sequence of Fourier Coef.	

Convolution:	

= 0

(uk = e
−i2π tk /τ )



d̂p + a1d̂p−1 +...+ aKd̂p−K = 0 (p = 0,1,...,K −1)

1+ a1z
−1 +...+ aKz

−K = ∏
k=0

K−1
(1−ukz

−1)

Annihilating	  Filter	

DFTdn d̂p Annihilating  filter ak

(Vetterli et al.,2002)	

: Annihilating relation	

38	

uk = e
−i2π tk /τ



In	  Case	  of	  K=2	
39	

τ0 t0 t1

c0 c1
τ0

d0 d1

d2

d3
d4Sampling	 DFT	

d̂−2, d̂−1,, d̂2

d̂0 + a1d̂−1 + a2d̂−2 = 0
d̂1 + a1d̂0 + a2d̂−1 = 0
d̂2 + a1d̂1 + a2d̂0 = 0

{
Annihilation 

1+ a1z
−1 + a2z

−2 =

(1−u0z
−1)(1−u1z

−1) = 0

tk = −
τ∠(uk )
2π

d̂−2 = c0u0
−2 + c1u1

−2

ck
d̂2 = c0u0

2 + c1u1
2{ 



Th.	  1	  Stream	  of	  Diracs	
40	
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Theorem 1:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2K

τ
(= ρ)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of Diracs.

Theorem 2:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of differentiated Diracs.

To be self-contained, let us show a proof of the
theorem.

(Proof) The Fourier coefficients d̂p of g(t) in
Eq. (10) are given by

d̂p =
1
τ

K−1∑

k=0

Rk−1∑

r=0

ak,r

(
i
2pπ

τ

)r

e−i2pπtk/τ ,

which, by letting ãk,r = (i2π/τ)rak,r/τ and uk =
e−i2πtk/τ , can be simplified into

d̂p =
K−1∑

k=0

Rk−1∑

r=0

ãk,rp
rup

k. (12)

The sequence d̂p can be annihilated by the filter {h0,
h1, . . ., hK̃} whose z-transform is

H(z) =
K̃∑

k=0

hkz−k =
K−1∏

k=0

(1 − ukz−1)Rk (13)

with Rk poles at z = uk, as shown in Appendix A in
[3]. We can see immediately h0 = 1. The annihilating
equation

d̂p + h1d̂p−1 + . . . + hK̃ d̂p−K̃ = 0

for p = 0, . . . , K̃ − 1 yields the matrix expression

Uh = −d̂, (14)

Periodic stream of differentiated Diracs f(t)

!! Sinc sampling
"

{dn}N−1
n=0

"

Reconstruction

DFT

{d̂p}P
p=−P

"

"

Annihilating filter

{hk}K̃
k=0

"
{tk}K−1

k=0

"

# {ak,r}K−1
k=0

R
r=0

"
Reconstructed signal f̃(t) = f(t)

Fig. 1 Reconstruction procedure for a periodic stream of dif-
ferentiated Diracs

where

U =





d̂−1 d̂−2 . . . d̂−K̃

d̂0 d̂−1 . . . d̂−K̃+1
...

...
. . .

...
d̂K̃−2 d̂K̃−3 . . . d̂−1




,

and

h =





h1

h2
...

hK̃




, d̂ =





d̂0

d̂1
...

d̂K̃−1




.

Eq. (14) requires 2K̃ Fourier coefficients d̂p, which are
available via Eq. (7) from {dn}N−1

n=0 because Eqs. (??)
and (??) imply N ≥ 2K̃ + 1. Eq. (14) is a standard
Yule-Walker system and has a unique solution since tk
are distinct. The factorization of the filter coefficients
as in Eq. (13) yields uk = e−i2πtk/τ , which lead to the
locations tk.

Once uk are obtained, Eq. (12) yields a linear ma-
trix equation with respect to ak,r:

V ã = d̂,

where V is a matrix

V =
1
τ





1 . . . 0
...

. . .
...

uK̃−1
0 . . . (K̃ − 1)RK−1(uK−1)K̃−1





and ã = (ã0,0, . . . , ãK−1,Rk−1)T . This equation also
has a unique solution since tk are distinct, and we have

(Vetterli et al., 2002)	



* Sampling rate for this scheme 

Sampling	  Rate	

B ≥ 2K
τ

ωs ≡
N
τ
≥
2K +1
τ

>
2K
τ

= ρ

41	

P ≤ Bτ
2
< P +1K ≤

Bτ
2

P = Bτ
2

!

"!
#

$#

K ≤ P

N ≥ 2P +1≥ 2K +1



Periodic	  Derivative	  of	  Diracs	
42	

f0 t( ) = ck,r δ
(r ) t − tk( )

r=0

R−1

∑
k=0

K−1

∑

Degree of freedom in a period:	

Rate of innovation:	

K  from time instants, and KR from coef.

ρ =
K +KR
τ

=
K(R+1)

τ



Fourier	  Coefficients	
43	

d̂p =
1
τ

f0 (t)exp
−i2pπ t
τ

dt
0

τ

∫

=
1
τ

ck,rδ
(r ) (t − tk )

r=0

R−1

∑
k=0

K−1

∑
$
%
&

'
(
)
exp −i2pπ t

τ
dt

0

τ

∫

=
1
τ

ck,r
i2pπ
τ

*

+
,

-

.
/
r

exp −i2pπ tk
τ

uk
p

  r=0

R−1

∑
k=0

K−1

∑

= ck,r p
ruk

p

r=0

R−1

∑
k=0

K−1

∑ ck,r =
1
τ
i2π
τ

!

"
#

$

%
&
r

ck,r



Annihilation	  in	  Case	  of	  K=1	  &	  R=2	
44	

d̂−P = c0,0u0
−P + c0,1(−P)u0

−P

d̂−P+1 = c0,0u0
−P+1 + c0,1(−P +1)u0

−P+1



d̂0 = c0,0


d̂P−1 = c0,0u0
P−1 + c0,1(P −1)u0

P−1

d̂P = c0,0u0
P + c0,1(P)u0

P

(u0 = e
−i2π t0 /τ )

Filter:	
Sequence of Fourier Coef.	

Convolution:	

a = [a0,a1,a2 ]
= [1,−u0 ]∗[1,−u0 ]
= [1,−2u0,u0

2 ]

(a∗ d̂)p = 0



Annihilation	  in	  General	  Case	

45	

(uk = e
−i2π tk /τ )

Filter:	Sequence of Fourier Coef.	

a = [a0,a1,...,aKR ]
= [1,−u0 ]∗...∗[1,−u0 ]

R  times
  

∗[1,−u1]∗...∗[1,−u1]
R  times

  


∗[1,−uK−1]∗...∗[1,−uK−1]

R  times
  

d̂p = ck,r p
ruk

p

r=0

R−1

∑
k=0

K−1

∑

Convolution:	

(a∗ d̂)p = 0



Th.	  2	  Derivative	  of	  Diracs	  	
46	
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Theorem 1:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of differentiated Diracs.

To be self-contained, let us show a proof of the
theorem.

(Proof) The Fourier coefficients d̂p of g(t) in
Eq. (10) are given by

d̂p =
1
τ

K−1∑

k=0

Rk−1∑

r=0

ak,r

(
i
2pπ

τ

)r

e−i2pπtk/τ ,

which, by letting ãk,r = (i2π/τ)rak,r/τ and uk =
e−i2πtk/τ , can be simplified into

d̂p =
K−1∑

k=0

Rk−1∑

r=0

ãk,rp
rup

k. (12)

The sequence d̂p can be annihilated by the filter {h0,
h1, . . ., hK̃} whose z-transform is

H(z) =
K̃∑

k=0

hkz−k =
K−1∏

k=0

(1 − ukz−1)Rk (13)

with Rk poles at z = uk, as shown in Appendix A in
[3]. We can see immediately h0 = 1. The annihilating
equation

d̂p + h1d̂p−1 + . . . + hK̃ d̂p−K̃ = 0

for p = 0, . . . , K̃ − 1 yields the matrix expression

Uh = −d̂, (14)

where

U =





d̂−1 d̂−2 . . . d̂−K̃

d̂0 d̂−1 . . . d̂−K̃+1
...

...
. . .

...
d̂K̃−2 d̂K̃−3 . . . d̂−1




,

and

h =





h1

h2
...

hK̃




, d̂ =





d̂0

d̂1
...

d̂K̃−1




.

Eq. (14) requires 2K̃ Fourier coefficients d̂p, which are

Periodic stream of differentiated Diracs f(t)

!! Sinc sampling
"

{dn}N−1
n=0

"

Reconstruction

DFT

{d̂p}P
p=−P

"

"

Annihilating filter

{hk}K̃
k=0

"
{tk}K−1

k=0

"

# {ak,r}K−1
k=0

R
r=0

"
Reconstructed signal f̃(t) = f(t)

Fig. 1 Reconstruction procedure for a periodic stream of dif-
ferentiated Diracs

available via Eq. (7) from {dn}N−1
n=0 because Eqs. (??)

and (??) imply N ≥ 2K̃ + 1. Eq. (14) is a standard
Yule-Walker system and has a unique solution since tk
are distinct. The factorization of the filter coefficients
as in Eq. (13) yields uk = e−i2πtk/τ , which lead to the
locations tk.

Once uk are obtained, Eq. (12) yields a linear ma-
trix equation with respect to ak,r:

V ã = d̂,

where V is a matrix

V =
1
τ





1 . . . 0
...

. . .
...

uK̃−1
0 . . . (K̃ − 1)RK−1(uK−1)K̃−1





and ã = (ã0,0, . . . , ãK−1,Rk−1)T . This equation also
has a unique solution since tk are distinct, and we have
ak,r. !

The reconstruction procedure is illustrated in Fig-
ure 1. The right-hand side of Eq. (??) is usually greater
than ρ because K̃ > K with Rk > 1. If B takes a value
between ρ and 2K̃/τ , then (K+K̃)/2 ≤ P < K̃. In this
case, 2K̃ values of d̂p are not available, and we cannot
establish Eq. (14). This means that the condition in
[3] was not sufficient for reconstruction of the periodic
stream of the differentiated Diracs.

A stream of K Diracs without any derivatives is
perfectly reconstructed from 2K +1 samples, which are
one more than 2K degrees of freedom of the signal. On
the other hand, Eqs. (??) and (??) imply that at least
2K̃ + 1 samples are needed for reconstruction of g(t).
This is much more than K+K̃ degrees of freedom of the

(Hirabayashi, 2012)	
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reconstructed. Further, we provided a concrete recon-
struction procedure, which is illustrated in Figure 2.

In the simulation shown in [3], K = 4, R = 1,
K̃ = 8, P = 50 and τ = 1024 were used. These pa-
rameters imply that B is a value between 100/1024 and
102/1024, which is much greater than 2K̃/τ = 16/1024.
Hence, the system (14) was successfully established. If
a critical value was used, like (4 + 16)/1024, then the
system could not be obtained.

Figure 3 shows a simulation result for sampling
and reconstruction of a periodic piecewise polynomial
of τ = 10, K = 4, and R = 2. Then, K̃ = 12 and
B must be greater or equal to 2.4, which we used as
B. Since P = 12, we used the critical number of sam-
ples N = 25. The thick dashed (black) and thin solid
(red) lines in (a) respectively show the target signal
and reconstructed signal from samples shown by the
bullet. The sampling functions for n = 11, 12, and 13
used in this simulation are shown in Figure (b). The
reconstructed result was within the machine precision.
The number N = 25 of samples used in this simula-
tion is more than the number of unknown parameters,
K+K̃ = 16. To reduce the number of samples, we have
to determine the locations tk more efficiently than using
annihilating filter as in Eq. (13).

5. Derivatives of Generic Function

The result obtained in Section 3 can also be applied
to the problem of sampling and reconstruction of FRI
signals f(t) in Eq. (3) with

g0(t) =
K−1∑

k=0

Rk−1∑

r=0

ck,rs
(r)(t − tk),

where ϕ(t) is a given function that has the Fourier
transform ϕ̂(ω). This signal f(t) is the convolution of
g(t) with ϕ(t):

f(t) = (ϕ ∗ g)(t) =
∫ ∞

−∞
ϕ(t′)g(t − t′)dt′.

Then, the Fourier coefficient d̂p(f) of f(t) is expressed
using that of g(t) and the Fourier transform ϕ̂(ω) as

d̂p(f) = ϕ̂(
2pπ

τ
)d̂p(g),

where d̂p(f) can be obtained from dn by Eq. (7). Hence,
as long as ϕ̂( 2pπ

τ ) #= 0, applying the technique in Sec-
tion 3 to d̂p(g) = d̂p(f)/ϕ̂( 2pπ

τ ) enables us to retrieve
unknown time instants and then the signal coefficients.
Therefore, we have the following

Theorem 4: Assume that B in Eq. (5) satisfies
Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
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(a) Target signal (thick line) and samples (‘•’). The re-
constructed signal is within machine precision. The thin
line shows the lowpass approximation of f(t).
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(b) Sinc sampling functions for n = 11, 12, and 13.

Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (20).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
Then, K̃ = 8 and Theorem 4 requests that B must be
greater or equal to 16/15, which we used as B. Since P
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rameters imply that B is a value between 100/1024 and
102/1024, which is much greater than 2K̃/τ = 16/1024.
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5. Derivatives of Generic Function

The result obtained in Section 3 can also be applied
to the problem of sampling and reconstruction of FRI
signals f(t) in Eq. (3) with

g0(t) =
K−1∑

k=0
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r=0

ck,rs
(r)(t − tk),

where ϕ(t) is a given function that has the Fourier
transform ϕ̂(ω). This signal f(t) is the convolution of
g(t) with ϕ(t):

g(t) =
∞∑

k′=−∞
g0(t − k′τ) = (s ∗ f)(t),

where f(t) is the stream of derivative of Diracs.
Then, the Fourier coefficient d̂p(g) of g(t) is ex-

pressed using that of g(t) and the Fourier transform
ŝ(ω) as

d̂p(g) = ŝ
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2pπ

τ
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where d̂p(f) can be obtained from dn by Eq. (7). Hence,
as long as ϕ̂( 2pπ

τ ) #= 0, applying the technique in Sec-
tion 3 to d̂p(g) = d̂p(f)/ϕ̂( 2pπ

τ ) enables us to retrieve
unknown time instants and then the signal coefficients.
Therefore, we have the following

Theorem 4: Assume that B in Eq. (5) satisfies
Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
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(b) Sinc sampling functions for n = 11, 12, and 13.

Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
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B must be greater or equal to 2.4, which we used as
B. Since P = 12, we used the critical number of sam-
ples N = 25. The thick dashed (black) and thin solid
(red) lines in (a) respectively show the target signal
and reconstructed signal from samples shown by the
bullet. The sampling functions for n = 11, 12, and 13
used in this simulation are shown in Figure (b). The
reconstructed result was within the machine precision.
The number N = 25 of samples used in this simula-
tion is more than the number of unknown parameters,
K+K̃ = 16. To reduce the number of samples, we have
to determine the locations tk more efficiently than using
annihilating filter as in Eq. (13).
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The result obtained in Section 3 can also be applied
to the problem of sampling and reconstruction of FRI
signals f(t) in Eq. (3) with

g0(t) =
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ck,rs
(r)(t − tk),

where ϕ(t) is a given function that has the Fourier
transform ϕ̂(ω). This signal f(t) is the convolution of
g(t) with ϕ(t):

g(t) =
∞∑

k′=−∞
g0(t − k′τ) = (s ∗ f)(t),

where f(t) is the stream of derivative of Diracs,
Since
the Fourier coefficient d̂p(g) of g(t) is expressed

using that of g(t) and the Fourier transform ŝ(ω) as

d̂p(g) = ŝ

(
2pπ

τ

)
d̂p(f),

where d̂p(f) can be obtained from dn by Eq. (7). Hence,
as long as ϕ̂( 2pπ

τ ) #= 0, applying the technique in Sec-
tion 3 to d̂p(g) = d̂p(f)/ϕ̂( 2pπ

τ ) enables us to retrieve
unknown time instants and then the signal coefficients.
Therefore, we have the following

Theorem 4: Assume that B in Eq. (5) satisfies
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(b) Sinc sampling functions for n = 11, 12, and 13.

Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
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Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =
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1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
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Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
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Theorem 4:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. If s(t) satisfies ŝ(2pπ/τ) $= 0 for
p = −P ∼ P , then the samples {dn}N−1

n=0 using the sinc
kernel are a sufficient characterization of the τ -periodic
stream of derivative of general pulses.

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
Then, K̃ = 8 and Theorem 4 requests that B must be
greater or equal to 16/15, which we used as B. Since P
becomes 8, N have to be greater or equal to 17, which
we used as N . Because ϕ̂(ω) = {sinc(ω/2π)}4, we can
see that ϕ̂(2pπ/τ) $= 0.

A simulation result is shown in Figure 4. The thick
dashed (black) and thin solid (red) lines show the target
and reconstructed signals, respectively. Note that the
right end part around [12, 15) is completely flat and we
know that this signal is not bandlimited. The bullets
show the samples obtained using the sinc kernel. We
can see that the reconstructed signal is again within the
machine precision.

6. Conclusion

In this paper, we addressed the problem of sampling
and reconstruction of periodic piecewise polynomials
from samples obtained using the sinc kernel. Even
though this problem was discussed in the previous pa-
per, there was an error in a condition for the sinc kernel
and only reconstruction procedure using Fourier series
was shown. Hence, we first provided a correct condi-
tion for the sinc kernel, saying that we have to use a
bandwidth more than twice of the number of unknown
coefficients over period. Based on this result, we de-
rived the sampling theorem for the periodic piecewise
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(a) Target signal (thick line) and samples (‘•’). The re-
constructed signal is within machine precision. The thin
line shows the lowpass approximation of f(t).
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(b) Sinc sampling functions for n = 7, 8, and 9.

Fig. 4 Simulation results for an FRI signal with derivatives of
the cubic spline.

polynomials. We pointed out that, since the mapping
from a periodic stream of differentiated Diracs to the
periodic piecewise polynomial is not one-to-one, infor-
mation other than the periodic stream of differentiated
Diracs is necessary to uniquely recover the target sig-
nal. To this end, we used the average of the signal,
which is available as the Fourier coefficient for p = 0.
Then, the parameters in the piecewise polynomials are
successfully obtained, and the signal was perfectly re-
constructed. We further showed a sampling theorem for
FRI signals with derivatives of a given function. Our
future tasks include reduction of the number of samples
by retrieving the time instants more efficiently.
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Derivative	  of	  B-‐Spline	  of	  2nd	  Deg.	
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Periodic	  Piecewise	  Polynomial	
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* Introduction of new class of signals 
* As an extension of bandlimited signals 

* Sampling and Reconstruction 
* Noiseless case 
* Noisy case 

* Application 
* Compression of ECG signals 
* Line-edge extraction 

Outline	
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In	  Noisy	  Case	
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Cadzow Denoizing 
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Cadzow Denoizing 
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Toward	  Maximum	  Likelihood	  
Estimation
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Toward	  Maximum	  Likelihood	  
Estimation	  (cnt’d)
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Log-‐Likelihood	  Function

y = d + e

e = y−d = y−F−1Utc

p(e) = p(y−F−1Utc)

l(t, c) = log p(y−F−1Utc)

y =

y0
y1

yN−1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

58	



Gaussian	  Distribution

l(t, c) = −
y−F−1Utc

2

2σ 2 +Constant

y−F−1Utc
2

Minimization of 	

F: unitary	

f0 (t, c) = ŷ−Utc
2

Minimization of 	
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ŷ = Fy



Reduction	  of	  Parameters

f0 (t, c) = ŷ−Utc
2

Hence, minimizer is obtained by 	

For a fixed t,	

is minimized by	

c(t) =Ut
+ŷ.

f0 (t, c(t)) = ŷ−UtUt
+ŷ

2
.
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Values	  of	  Likelihood	  Function

Noiseless case	 Noisy case	

t1

(t1 > t0 )
t0 t0

t1

(PSNR=0dB)	
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Coarse	  to	  Fine	  Search

Coarse

Fine
t0

t1
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Particle	  Swarm	  Optimization

Global  best  position

Velocity  of  particle

Previous  position  of  particle

t0

t1

Best  position  of  particle
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Ex)	  Reconstruction	  Result

	  Original	  Signal	  
	  CtoF	  Search	  
	  Annihilating	  Filter

In case of K=2 and PSNR=0dB	
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Mean	  Squared	  Error	  for	  ck	
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Computational	  Cost
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