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Classical Sampling Theorem

* Whittaker (1915), Kotelnikovi((1933), S¢€
(1948), and Shannon (1948)
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Surface Profiling by WLI

WLI (White-Light Inte

Technique for surface profiling of semiconductors, LCD,
Plastic films, etc...

l[pixel] =5.9 [ mn] x5.9 [ MII]] http://www.scn.tv/user/torayins/SP-500.html
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White-Light Interferometer
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White-Light Interferogram
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Nyquist Sampling for WLI

Z Caber (1993)



Bandlimitation of WLI
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Bandlimitation of lowpass type: Nyquist Int.
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Bandlimitation of WLI

<> <>
Bandlimitation of Bandpass Type=Kohlenberg (1953)



Interval of Our Algorithm

Zp Hirabayashi et al. (2002)



Surface Profiler SP500

http://www.scn.tv/user/torayins/SP-500.html



New Class of Signals
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Sampling Signals With Finite Rate of Innovation

Martin Vetterli, Fellow, IEEE, Pina Marziliano, and Thierry Blu, Member, IEEE

Abstract— Consider classes of signals that have a finite number
of degrees of freedom per unit of time and call this number the rate
of innovation. Examples of signals with a finite rate of innovation
include streams of Diracs (e.g., the Poisson process), nonuniform
splines, and piecewise polynomials.

Even though these signals are not bandlimited, we show that they
can be sampled uniformly at (or above) the rate of innovation using
an appropriate kernel and then be perfectly reconstructed. Thus,
we prove sampling theorems for classes of signals and kernels that
generalize the classic “bandlimited and sinc kernel” case. In par-
ticular, we show how to sample and reconstruct periodic and fi-
nite-length streams of Diracs, nonuniform splines, and piecewise
polynomials using sinc and Gaussian kernels. For infinite-length
signals with finite local rate of innovation, we show local sampling
and reconstruction based on spline kernels.

The key in all constructions is to identify the innovative part of
a signal (e.g., time instants and weights of Diracs) using an annihi-
lating or locator filter: a device well known in spectral analysis and
error-correction coding. This leads to standard computational pro-
cedures for solving the sampling problem, which we show through
experimental results.

Applications of these new sampling results can be found in signal
processing, communications systems, and biological systems.

Index Terms— Analog-to-digital conversion, annihilating fil-
ters, generalized sampling, nonbandlimited signals, nonuniform
splines, piecewise polynomials, poisson processes, sampling.
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Fig. 1. Sampling setup: »(f} is the continuous-time signal; ii(t) = h[ 1)
is the smoothing kemnel; 4| 1) is the filtered signal; /" is the sampling interval;
ys( 1) is the sampled version of y(t); and y(n1"),n € £ are the sample values.
The box C/D stands for continuous-to-discrete transformation and corresponds
to reading out the sample values y(n 1) from y,(1).

The intermediate signal () cormresponding to an idealized
sampling is given by

ys(t) = Z y(nT) &(t — ).
ned
This setup is shown in Fig. 1.

When no smoothing kernel is used, we simply have y(nl") =
x(nT’), which is equivalent to (1) with /(fy = &(f). This simple
model for having access to the continuous-time world is typ-
ical for acquisition devices in many areas of science and tech-
nology, including scientific measurements, medical and biolog-
ical signal processing, and analog-to-digital converters.
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* Introduction of new C|ass O

* As an extension of bandlimited signals

*Sampling and Reconstruction
*Noiseless case
*Nolisy case
* Application
* Compression of ECG signals
* Line-edge extraction




*|ntroduction of new
* As an extension of bandlimited signals
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Extension of Classical Samp. Th.

()= i ¢, s(t —kAt)

k=—00
s(t): given function with FT s(w)

.
f(t) = E CkS(t_tk)

k:—OO



Rate of Innovation

Unknown parameters: (7,,c,)

C,(t,t,)=number of r, E|[z,,1,| & corresponding c,

Rate of innovation: p = limle (-7/2,7/2)

T—>C0 T

If p<oo, f(¢) 1s called

Signals with Finite Rate of Innovation
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More General Case

Ezckrsr s, (1) gIve

k=— r=0

Unknown parameters: (tk ,Cp., )

C,(t,t,)=number of r, €|z ,1,| & corresponding c,,

Rate of innovation: p=1im—C,(-7/2,7/2)

T—>C0 T

If p<oo, f(¢) 1s called

Signals with Finite Rate of Innovation
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. ocal Rate of Innovation

For a fixed 7, a local rate 0! nnovation &

1s defined by

p(1)=C, (1-T/2.147/2).
T

Then, a local rate of innovation is defined by

0 =max p(t).



Periodic Signals with FRI

Rate of innovation: p = 2—K

T



Echo Imaging

Echo

Echo from A Echo from B
‘ J

1
r,=vt, /2
v=1,530m/s
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Neuron Pulses
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Stream of Diracs

The most importe

o0

f(t)= Ecké(t—tk),

k=—OO

where [ 8(t-1,)¢(t)dt = §(t,).
This is because the convolution generates

2(t) = (S*f)(t) = E cks(t—tk).

k=—OO

e

§(@)=5(w)f(w)



Stream of Derivative of Diracs

f(fm

k=—o r=0

[~ 87 (t=1,) ) dr = (=17 67 (1,)

g(t)=(s* f)(r) = E E_(—l) c,, s (t—1,)



Two Types of Sparsity

* Discrete case (Compressec

DCT, Wavelet, etc

TT¢TTT, —

wTe—eT%>

Sparse vector

* Continuous case (FRI theory):

/\\//\ ) de%on I\ T )

Stream of Diracs




*Sampling and Reconstruction

*Noiseless case
%
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Periodic Stream of Diracs

Given: T,K  Unknown: f,,c,

[ Rate of Innovation 0 = 2K/r]
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Sampling Filter

Sampling (1
fltery(7) (n=0,...N~1)

ft)—
(non-bandlimited)
d, =(f@0),p@-nT))= [ f@eyp(t-nT)ds
T=1t/N

Proposed sampling filters

Support  Number of pulse

Sinc (Vetterli et al., 2002) Infinite >10

Spline (Dragotti et al., 2007) Finite <10

Sum of Sinc (Tur et al., 2011) Finite >10




Sinc Sampling Filter

Sampling

ft)—

(non-bandlimited)

d, =(f@0),p@-nT))= [ f@eyp(t-nT)ds
I'=t1/N

fltery(7) (n=0,..,N=1)

Y(t) = Bsinc(Bt), where B= p = 2_K

T



Sinc Samples

WOUGEALEE
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E fot=k't); Bsinc(t —nT')dt

- f_oo J E fo(@)Bsinc(t —nT + k"l:)}dl‘ Poisson Sum Form.
k'=—c0

o | \
[T —-i2pr(t—nT) p_|BT|_ BT
—fof(t)<—2Pexp . dt ( =5
P . .
— E { f fo (H)exp ~i2p7t dt}exp 2 pni
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~
Fourier coefficient of f ()



Sinc Samples vs. Fourier Coef.




Fourier Coefficients




Sinc Sampling

Cf) Spectral Estimation, Direction of Arrival (DoA)

Problem FRI theory Spectral DoA
Parameters Time delay Frequency Direction
K # of pulse  #of component # of object

Sampling ‘? Nyquist Nyquist
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Annihilation in case of K=1

Sequence of Fourier Coef.

R Filter:
d )

_p = Coldy La=[ao’a1]=[1’_u0ﬂ

g —P+1
d_p,, =cylU,

= Canqution:
A ax*d|] = Yad
d =c ( ) E 9% p-q
0 0 O
; o =a,d,+ad,
=C.U
P-1 0“*0 - oo p-1
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Annihilation in case of K=2

Sequence of Fourier Coef.

Filter:
c;’_P=cOu0 +clufp\ a=|la,,a,a,] h
c;?_PH = cou(;P+1 + clufp+1 =1L, —(uy + 1), uyu; |
: L =[1,—u, ] *[1,-u,] D
A Convolution:
d,=c,+c

(a*c?) —aod +a1d +a23p_2 )
p

-1

/\

\d = Colly + / reuf (=)A=
L =0 /

e = cul (1-u,z” )(1-u,




Annihilating Filter

dn —>| DFT — d. —| Annihilating filter —> 4,

. Annihilating relation

K-1
Ll + alz'1 A e r aKz'K =[] (1- ukz_l)}
k=0

u, =e

127t /T



In Case of K=2

Annihilation(

- -1 2

(I-upz )1 -,z7) =0

-2 )
(d_, =couy” +cu;

/(u, |
gtk=‘rz(j:)é< : —) ¢

Vo

2 2
L d, =c,u, +cu,




Th. 1 Stream of Diracs

‘\

Assume that B in 1(t) = Bsinc(Bt) satisfies

2K
B> — (=
. (= p)
and that

N >2P +1

with P = |B71/2|. Then, the sinc kernel samples
{d, Y-} are a sufficient characterization of the 7-
periodic stream of Diracs.



Nz=2P+1=2K +1

*Sampling rate for this scheme
N 2K+1 2K

W, =—z= >——=p
T T T




Periodic Derivative of Diracs

=it
L= e, =ty

k=0 r=0

Degree of freedom in a period:

K from time instants, and KR from coef.

Rate of innovation:
K+KR K(R+1)
T T

0=



Fourier Coefficients




Annihilation in Case of K=1 & R=2

Sequence of Fourier Coef.

dp_ —Coouo

"‘Cm(P 1)u

\d —Coouo +601(P)u0

y

Filter:

44

a =

a,,a,,a, ]
1, —u, 1+ [1,-u, ]
1,-2u,,u, ]

\

/

\ =1
Convolution:
 (axd), =0

. J
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Annihilation in General Case

k

Sequence of Fourier Coef. Filter:

a KJRI o a=\a,,a,...,a;,]
p =;;Eock,rp i =[1,—u, 1%...%[1,—u, ]
=0 r= \ ~~ ~/
R times
*[1,—141]*...*[1,—141}

Convolution: R times

 (axd),=0

*[L—MK_J % ...k [1,—uK_1]

v
R times



Th. 2 Derivative of Diracs

S S

Assume that B in ¢ (t) = Bsinc(Bt) satisfies

o 2KE <>p: K(R+1)>

T T

and that
N >2P +1

with P = |B7/2|. Then, the sinc kernel samples
{d,}-! are a sufficient characterization of the 7-
periodic stream of differentiated Diracs.



Original Statement in 2002

Theorem 3: Consider a periodic stream of differentiated
Diracs x(t) with period 7, as in (32). Take as a sampling
kernel hp(ty = Bsinc(Bt), where B is greater or equal to
the rate of innovation p given by (33). and sample (h B * .1:) (t)
at N uniform locations ¥ = nl.,n = 0....,N — 1, where
N > 2M + 1 and M = | B7/2|. Then, the samples

yn = (hp(t —nT). z(t)), n=0,...,N -1 (37)

are a sufficient characterization of x(t).

=K+K' (33)




Derivative of General Pulses

where f(t) is the stream of derivative of Diracs,

i) =5 (27) dyt1)

T
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Th. 3 Derivative of General Pulses

S

Assume that B in ¢ (t) = Bsinc(Bt) satisfies
2KR ( K(R+ 1))
> p =

B>

T T

and that
N >2P +1

with P = |B7/2]|. If s(t) satisfies §(2pm/7) # 0 for
p = —P ~ P, then the samples {dn}fyz_ol using the sinc
kernel are a sufficient characterization of the 7-periodic
stream of derivative of general pulses.



- s(t):Quad. Bsplin
- Sinc sampling
K=4




Periodic Piecewise Polynomial
= —

Degree 2 (R=3)
- Sinc Sampling
. K=4




*Sampling and Reconstruction
%

*Nolisy case
X

X

X



In Noisy Case

0 to 2,‘5 0 T
Sorad +ai 20 | 3 5 5 |
ﬁ< 5\71+a1j\}0+a25>_17é0 Q 5\’1 5\’0 5\’_1
\ §2+a1§1+a2§0¢0 \ Yo N Y N

é SVD @ Cadzow Denoizing if insufficient

minimization

DFT \,\ ,\ .
é YooY 157
T >

53

2



Cadzow Denoizing

\\/
/\

(* 0 0) _ (a b c) (t, t, c)

S=10 * 0 d e f™|. ¢ ¢

0 0 * \3 h i/ & 4 4

. ') -
O =Uus'vT

£ 0 0 | t,=(d+h)/2

S =0 * 0 t1=(a+e+i)/3

0 0 t, =(b+1)2

\ Deletion /




Cadzow Denoizing

Nonconvex



Toward Maximum Likelihood

Mation
/ 2 2 -1
1 el Pr/N el P(N-1)n/N \
o | pR2PDaN  i2(PD(N-Da/N
\ 1 e—iZPJt/N e—i2P(N—1)Jt/N

d=(d, d .. d,, )
d=(d, d,, .. d, )



Toward I\/\ax1mum Likelihood

[~ [ _p _p P\ \
d_p U U, Ug_ Co
~ —P+1 —P+1 —P+1 C
a = —P+l Ut = uO ul uK_l C= !
A P P C
\ d, / \ U U, Uk )\ K




Log-Likelihood Function

y=d+e\\

- )
e=y-d=y-F'Uc ’
Y
- y= .
p(e)=p(y-F'Uc) |
@ \yN—l /

[(t,e)=log p(y - F'U,c)



Gaussian Distribution

l(t,c)a— 5+ Conste
2
Minimization of |[y—F~'U¢
.. F:unitary

Minimization of f,(t,c)=[§-U.¢|
y=Fy



Reduction of Parameters

For a fixed t T

| A 2
fo(t,0) = [y - U]
IS minimized by
c(t)=Uy
Hence, minimizer is obtained by

f ey =[y-vuss|




Values of Likelihood Function

Noiseless case

61
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Particle Swarm Optimization

; - P
l)

Best position of particle

Previous position of particle




Ex) Reconstructlon Result

In case of K=

‘| Original Signal

12_.\_ ................ _. ............... ,.\. CtOFSearch
B O S o a =100 Annihilating Filter
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Mean Squared Error for ck
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