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*  Whittaker (1915), Kotelnikov (1933), Someya 
(1948), and Shannon (1948) 
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m]5.9[m]5.9[pixel][1 µµ ×= http://www.scn.tv/user/torayins/SP-500.html	


WLI (White-Light Interferometry):  
Technique for surface profiling of semiconductors, LCD, 
Plastic films, etc… 
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Nyquist	
  Sampling	
  for	
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mµ

mµ24.0=Δ

Caber (1993)	
pz



Bandlimitation	
  of	
  WLI	


ll k2=ω uu k2=ωuω− lω−

)(ˆ ωf

Bandlimitation of lowpass type: Nyquist Int.	
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Bandlimitation	
  of	
  WLI	


ll k2=ω uu k2=ωuω− lω−

)(ˆ ωf

Bandlimitation of Bandpass Type⇒Kohlenberg (1953)	
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Bandlimitation of lowpass type: Nyquist Int.	
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  Algorithm	
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 wider) times14  to(6
  425.1 mµ=Δ

pz Hirabayashi et al. (2002)	




Surface	
  Profiler	
  SP500	
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http://www.scn.tv/user/torayins/SP-500.html	


Toray Engineering, Co. Ltd.	




New	
  Class	
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* Introduction of new class of signals 
* As an extension of bandlimited signals 

* Sampling and Reconstruction 
* Noiseless case 
* Noisy case 

* Application 
* Compression of ECG signals 
* Line-edge extraction 

Outline	
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Extension	
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f (t) = 2ωc

ωs

f k
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sin2πωc (t − k ωs )
2πωc (t − k ωs )k=−∞

∞

∑

f (t) = cks(t − kΔt)
k=−∞

∞

∑

f (t) = cks(t − tk )
k=−∞

∞

∑

s(t) :  given function with FT ŝ(ω)



Rate	
  of	
  Innovation	


Rate of innovation: ρ = lim
τ→∞

1
τ
Cf −τ / 2,τ / 2( )

f t( ) = ck s t − tk( )
k=−∞

∞

∑ s(t) :  given function

Unknown parameters: tk,ck( )

Signals with Finite Rate of Innovation 

Vetterli et al. (2002)	
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Cf ta, tb( ) = number of tk ∈ ta, tb[ ]  & corresponding ck

If ρ <∞,  f (t) is called



More	
  General	
  Case	


Rate of innovation: ρ = lim
τ→∞

1
τ
Cf −τ / 2,τ / 2( )

f t( ) = ck,r sr t − tk( )
r=0

R−1

∑
k=−∞

∞

∑ sr (t) :  given function

Unknown parameters: tk,ck,r( )

Signals with Finite Rate of Innovation 

Vetterli et al. (2002)	
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Cf ta, tb( ) = number of tk ∈ ta, tb[ ]  & corresponding ck,r

If ρ <∞,  f (t) is called



Local	
  Rate	
  of	
  Innovation	
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ρ(t) = 1
τ
Cf t −τ / 2, t +τ / 2( ).

For a fixed τ ,  a local rate of innovation at time t  
is defined by

ρ =max
t
ρ(t).

Then, a local rate of innovation is defined by



Periodic	
  Signals	
  with	
  FRI	
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Rate of innovation: ρ = 2K
τ

f0 (t) = cks(t − tk )
k=0

K−1

∑

f (t)
f0 (t)

(Vetterli et al.,2002)	


0 τ



Echo	
  Imaging	
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Probe	


Echo	


Echo from A	
Intensity	
 Echo from B	


t0 t1
rk = vtk / 2

v =1,530m / s



Neuron	
  Pulses	

24	




Stream	
  of	
  Diracs	
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f t( ) = ck δ t − tk( )
k=−∞

∞

∑ ,

The most important signal with FRI is	


g(t) = (s∗ f ) t( ) = ck s t − tk( )
k=−∞

∞

∑ .

ĝ(ω) = ŝ ω( ) f̂ ω( )

This is because the convolution generates	


where δ(t − tk )φ(t)dt
−∞

∞

∫ = φ(tk ).



Stream	
  of	
  Derivative	
  of	
  Diracs	
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f t( ) = ck,r δ
(r ) t − tk( )

r=0

R−1

∑
k=−∞

∞

∑

g(t) = (s∗ f ) t( ) = (−1)r ck,r s
(r ) t − tk( )

r=0

R−1

∑
k=−∞

∞

∑

δ (r ) t − tk( )φ(t)dt = (−1)r
−∞

∞

∫ φ (r ) (tk )

: special case of f t( ) = ck,r sr t − tk( )
r=0

R−1

∑
k=−∞

∞

∑  with sr (t) = s
(r ) (t).



Two	
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* Discrete case (Compressed sensing): 

* Continuous case (FRI theory): 

	


DCT, Wavelet, etc	


deconvolution	


Stream of Diracs	


Sparse vector	




* Introduction of new class of signals 
* As an extension of bandlimited signals 

* Sampling and Reconstruction 
* Noiseless case 
* Noisy case 

* Application 
* Compression of ECG signals 
* Line-edge extraction 

Outline	
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Periodic	
  Stream	
  of	
  Diracs	
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f0 t( ) = ck δ t − tk( )
k=0

K−1

∑

Given： Unknown： K,τ tk ,ck

0 τ0t 1t 2t

c0

c1

c2 3=K

Rate of Innovation τρ /2K=



Support� Number	
  of	
  pulse �

Sinc	
  (Vetterli	
  et	
  al.,	
  2002)� Infinite � >	
  10 �

Spline	
  (Dragotti	
  et	
  al.,	
  2007)� Finite � <10 �

Sum	
  of	
  Sinc	
  (Tur	
  et	
  al.,	
  2011)� Finite � >10 �

Sampling	
  Filter	
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Sampling	
  
filter	
  	
  	
  	
  	
  a�

Sampling	


(non-bandlimited)	


f (t)
f (t)

dn = f (t),ψ(t − nT ) = f (t)ψ(t − nT )dt
−∞

∞

∫

dn

Proposed sampling filters	


ψ(t)

T = τ / N

(n = 0,...,N −1)



Sinc	
  Sampling	
  Filter	
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Sampling	
  
filter	
  	
  	
  	
  	
  a�

Sampling	


(non-bandlimited)	


f (t)
f (t)

dn = f (t),ψ(t − nT ) = f (t)ψ(t − nT )dt
−∞

∞

∫

dnψ(t)

T = τ / N

(n = 0,...,N −1)

ψ(t) = Bsinc(Bt), where B ≥ ρ = 2K
τ



Sinc	
  Samples	
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dn = f (t)ψ(t − nT )dt
−∞

∞

∫

= f0 (t − k 'τ )
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0

τ

∫
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1
τ
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τ
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0

τ

∫
%
&
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(
)
*

Fourier coefficient of f (t )
  
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&

'
(

)

*
+

Poisson Sum Form.	




Sinc	
  Samples	
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  Fourier	
  Coef.	
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dn = d̂pexp
i2pnπ
N
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"
#

$

%
&

p=−P

P

∑

d̂p =
1
N

dnexp −
i2pnπ
N

"

#
$

%

&
'

n=0

N−1

∑

DFT	


N ≥ 2P +1



Fourier	
  Coefficients	
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d̂p =
1
τ

f0 (t)exp
−i2pπ t
τ

dt
0

τ

∫

=
1
τ

ckδ(t − tk
k=0

K−1

∑ )
$
%
&

'
(
)
exp −i2pπ t

τ
dt

0

τ

∫

=
1
τ

ckexp
−i2pπ tk

τk=0

K−1

∑

=
1
τ

ckuk
p

k=0

K−1

∑ uk = exp
−i2pπ tk

τ



d̂p = ckuk
p

k=0

K−1

∑

Sinc	
  Sampling	


ＤＦＴ�dn

Cf) Spectral Estimation, Direction of Arrival (DoA) 

(uk = e
−i2π tk /τ )

Problem	
   FRI	
  theory� Spectral � DoA�
Parameters� Time	
  delay� Frequency � Direction�

K� #	
  of	
  pulse � #	
  of	
  component � #	
  of	
  object �
Sampling� ？� Nyquist � Nyquist �
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a∗ d̂( )p = aqd̂p−q
q=0

1

∑

= a0d̂p + a1d̂p−1
= c0u0

p + (−u0 )c0u0
p−1

= 0

Annihilation	
  in	
  case	
  of	
  K=1	

36	


d̂−P = c0u0
−P

d̂−P+1 = c0u0
−P+1



d̂0 = c0


d̂P−1 = c0u0
P−1

d̂P = c0u0
P

(u0 = e
−i2π t0 /τ )

Filter:	

Sequence of Fourier Coef.	


Convolution:	


a = [a0,a1]= [1,−u0 ]



a = [a0,a1,a2 ]
= [1,−(u0 +u1),u0u1]
= [1,−u0 ]∗[1,−u1]

d̂−P = c0u0
−P + c1u1

−P

d̂−P+1 = c0u0
−P+1 + c1u1

−P+1



d̂0 = c0 + c1


d̂P−1 = c0u0
P−1 + c1u1

P−1

d̂P = c0u0
P + c1u1

P

Annihilation	
  in	
  case	
  of	
  K=2	

37	


a∗ d̂( )p = a0d̂p + a1d̂p−1 + a2d̂p−2
= c0u0

p (1−u0z
−1)(1−u1z

−1)
z=u0

+c1u1
p (1−u0z

−1)(1−u1z
−1)

z=u1

Filter:	
Sequence of Fourier Coef.	


Convolution:	


= 0

(uk = e
−i2π tk /τ )



d̂p + a1d̂p−1 +...+ aKd̂p−K = 0 (p = 0,1,...,K −1)

1+ a1z
−1 +...+ aKz

−K = ∏
k=0

K−1
(1−ukz

−1)

Annihilating	
  Filter	


DFT�dn d̂p Annihilating  filter� ak

(Vetterli et al.,2002)	


: Annihilating relation	
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uk = e
−i2π tk /τ



In	
  Case	
  of	
  K=2	

39	


τ0 t0 t1

c0 c1
τ0

d0 d1

d2

d3
d4Sampling	
 DFT	


d̂−2, d̂−1,, d̂2

d̂0 + a1d̂−1 + a2d̂−2 = 0
d̂1 + a1d̂0 + a2d̂−1 = 0
d̂2 + a1d̂1 + a2d̂0 = 0

{
Annihilation 

1+ a1z
−1 + a2z

−2 =

(1−u0z
−1)(1−u1z

−1) = 0

tk = −
τ∠(uk )
2π

d̂−2 = c0u0
−2 + c1u1

−2

ck
d̂2 = c0u0

2 + c1u1
2{ 



Th.	
  1	
  Stream	
  of	
  Diracs	

40	
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Theorem 1:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2K

τ
(= ρ)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of Diracs.

Theorem 2:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of differentiated Diracs.

To be self-contained, let us show a proof of the
theorem.

(Proof) The Fourier coefficients d̂p of g(t) in
Eq. (10) are given by

d̂p =
1
τ

K−1∑

k=0

Rk−1∑

r=0

ak,r

(
i
2pπ

τ

)r

e−i2pπtk/τ ,

which, by letting ãk,r = (i2π/τ)rak,r/τ and uk =
e−i2πtk/τ , can be simplified into

d̂p =
K−1∑

k=0

Rk−1∑

r=0

ãk,rp
rup

k. (12)

The sequence d̂p can be annihilated by the filter {h0,
h1, . . ., hK̃} whose z-transform is

H(z) =
K̃∑

k=0

hkz−k =
K−1∏

k=0

(1 − ukz−1)Rk (13)

with Rk poles at z = uk, as shown in Appendix A in
[3]. We can see immediately h0 = 1. The annihilating
equation

d̂p + h1d̂p−1 + . . . + hK̃ d̂p−K̃ = 0

for p = 0, . . . , K̃ − 1 yields the matrix expression

Uh = −d̂, (14)

Periodic stream of differentiated Diracs f(t)

!! Sinc sampling
"

{dn}N−1
n=0

"

Reconstruction

DFT

{d̂p}P
p=−P

"

"

Annihilating filter

{hk}K̃
k=0

"
{tk}K−1

k=0

"

# {ak,r}K−1
k=0

R
r=0

"
Reconstructed signal f̃(t) = f(t)

Fig. 1 Reconstruction procedure for a periodic stream of dif-
ferentiated Diracs

where

U =





d̂−1 d̂−2 . . . d̂−K̃

d̂0 d̂−1 . . . d̂−K̃+1
...

...
. . .

...
d̂K̃−2 d̂K̃−3 . . . d̂−1




,

and

h =





h1

h2
...

hK̃




, d̂ =





d̂0

d̂1
...

d̂K̃−1




.

Eq. (14) requires 2K̃ Fourier coefficients d̂p, which are
available via Eq. (7) from {dn}N−1

n=0 because Eqs. (??)
and (??) imply N ≥ 2K̃ + 1. Eq. (14) is a standard
Yule-Walker system and has a unique solution since tk
are distinct. The factorization of the filter coefficients
as in Eq. (13) yields uk = e−i2πtk/τ , which lead to the
locations tk.

Once uk are obtained, Eq. (12) yields a linear ma-
trix equation with respect to ak,r:

V ã = d̂,

where V is a matrix

V =
1
τ





1 . . . 0
...

. . .
...

uK̃−1
0 . . . (K̃ − 1)RK−1(uK−1)K̃−1





and ã = (ã0,0, . . . , ãK−1,Rk−1)T . This equation also
has a unique solution since tk are distinct, and we have

(Vetterli et al., 2002)	




* Sampling rate for this scheme 

Sampling	
  Rate	


B ≥ 2K
τ

ωs ≡
N
τ
≥
2K +1
τ

>
2K
τ

= ρ

41	


P ≤ Bτ
2
< P +1K ≤

Bτ
2

P = Bτ
2

!

"!
#

$#

K ≤ P

N ≥ 2P +1≥ 2K +1



Periodic	
  Derivative	
  of	
  Diracs	

42	


f0 t( ) = ck,r δ
(r ) t − tk( )

r=0

R−1

∑
k=0

K−1

∑

Degree of freedom in a period:	


Rate of innovation:	


K  from time instants, and KR from coef.

ρ =
K +KR
τ

=
K(R+1)

τ



Fourier	
  Coefficients	
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d̂p =
1
τ

f0 (t)exp
−i2pπ t
τ

dt
0

τ

∫

=
1
τ

ck,rδ
(r ) (t − tk )

r=0

R−1

∑
k=0

K−1

∑
$
%
&

'
(
)
exp −i2pπ t

τ
dt

0

τ

∫

=
1
τ

ck,r
i2pπ
τ

*

+
,

-

.
/
r

exp −i2pπ tk
τ

uk
p

  r=0

R−1

∑
k=0

K−1

∑

= ck,r p
ruk

p

r=0

R−1

∑
k=0

K−1

∑ ck,r =
1
τ
i2π
τ

!

"
#

$

%
&
r

ck,r



Annihilation	
  in	
  Case	
  of	
  K=1	
  &	
  R=2	
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d̂−P = c0,0u0
−P + c0,1(−P)u0

−P

d̂−P+1 = c0,0u0
−P+1 + c0,1(−P +1)u0

−P+1



d̂0 = c0,0


d̂P−1 = c0,0u0
P−1 + c0,1(P −1)u0

P−1

d̂P = c0,0u0
P + c0,1(P)u0

P

(u0 = e
−i2π t0 /τ )

Filter:	

Sequence of Fourier Coef.	


Convolution:	


a = [a0,a1,a2 ]
= [1,−u0 ]∗[1,−u0 ]
= [1,−2u0,u0

2 ]

(a∗ d̂)p = 0



Annihilation	
  in	
  General	
  Case	


45	


(uk = e
−i2π tk /τ )

Filter:	
Sequence of Fourier Coef.	


a = [a0,a1,...,aKR ]
= [1,−u0 ]∗...∗[1,−u0 ]

R  times
  

∗[1,−u1]∗...∗[1,−u1]
R  times

  


∗[1,−uK−1]∗...∗[1,−uK−1]

R  times
  

d̂p = ck,r p
ruk

p

r=0

R−1

∑
k=0

K−1

∑

Convolution:	


(a∗ d̂)p = 0



Th.	
  2	
  Derivative	
  of	
  Diracs	
  	

46	
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Theorem 1:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. Then, the sinc kernel samples
{dn}N−1

n=0 are a sufficient characterization of the τ -
periodic stream of differentiated Diracs.

To be self-contained, let us show a proof of the
theorem.

(Proof) The Fourier coefficients d̂p of g(t) in
Eq. (10) are given by

d̂p =
1
τ

K−1∑

k=0

Rk−1∑

r=0

ak,r

(
i
2pπ

τ

)r

e−i2pπtk/τ ,

which, by letting ãk,r = (i2π/τ)rak,r/τ and uk =
e−i2πtk/τ , can be simplified into

d̂p =
K−1∑

k=0

Rk−1∑

r=0

ãk,rp
rup

k. (12)

The sequence d̂p can be annihilated by the filter {h0,
h1, . . ., hK̃} whose z-transform is

H(z) =
K̃∑

k=0

hkz−k =
K−1∏

k=0

(1 − ukz−1)Rk (13)

with Rk poles at z = uk, as shown in Appendix A in
[3]. We can see immediately h0 = 1. The annihilating
equation

d̂p + h1d̂p−1 + . . . + hK̃ d̂p−K̃ = 0

for p = 0, . . . , K̃ − 1 yields the matrix expression

Uh = −d̂, (14)

where
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



d̂−1 d̂−2 . . . d̂−K̃

d̂0 d̂−1 . . . d̂−K̃+1
...

...
. . .

...
d̂K̃−2 d̂K̃−3 . . . d̂−1




,

and

h =


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h2
...

hK̃




, d̂ =





d̂0

d̂1
...

d̂K̃−1




.

Eq. (14) requires 2K̃ Fourier coefficients d̂p, which are

Periodic stream of differentiated Diracs f(t)

!! Sinc sampling
"
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n=0

"

Reconstruction

DFT
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p=−P

"

"
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"
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"
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R
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"
Reconstructed signal f̃(t) = f(t)

Fig. 1 Reconstruction procedure for a periodic stream of dif-
ferentiated Diracs

available via Eq. (7) from {dn}N−1
n=0 because Eqs. (??)

and (??) imply N ≥ 2K̃ + 1. Eq. (14) is a standard
Yule-Walker system and has a unique solution since tk
are distinct. The factorization of the filter coefficients
as in Eq. (13) yields uk = e−i2πtk/τ , which lead to the
locations tk.

Once uk are obtained, Eq. (12) yields a linear ma-
trix equation with respect to ak,r:

V ã = d̂,

where V is a matrix

V =
1
τ





1 . . . 0
...

. . .
...

uK̃−1
0 . . . (K̃ − 1)RK−1(uK−1)K̃−1





and ã = (ã0,0, . . . , ãK−1,Rk−1)T . This equation also
has a unique solution since tk are distinct, and we have
ak,r. !

The reconstruction procedure is illustrated in Fig-
ure 1. The right-hand side of Eq. (??) is usually greater
than ρ because K̃ > K with Rk > 1. If B takes a value
between ρ and 2K̃/τ , then (K+K̃)/2 ≤ P < K̃. In this
case, 2K̃ values of d̂p are not available, and we cannot
establish Eq. (14). This means that the condition in
[3] was not sufficient for reconstruction of the periodic
stream of the differentiated Diracs.

A stream of K Diracs without any derivatives is
perfectly reconstructed from 2K +1 samples, which are
one more than 2K degrees of freedom of the signal. On
the other hand, Eqs. (??) and (??) imply that at least
2K̃ + 1 samples are needed for reconstruction of g(t).
This is much more than K+K̃ degrees of freedom of the

(Hirabayashi, 2012)	
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reconstructed. Further, we provided a concrete recon-
struction procedure, which is illustrated in Figure 2.

In the simulation shown in [3], K = 4, R = 1,
K̃ = 8, P = 50 and τ = 1024 were used. These pa-
rameters imply that B is a value between 100/1024 and
102/1024, which is much greater than 2K̃/τ = 16/1024.
Hence, the system (14) was successfully established. If
a critical value was used, like (4 + 16)/1024, then the
system could not be obtained.

Figure 3 shows a simulation result for sampling
and reconstruction of a periodic piecewise polynomial
of τ = 10, K = 4, and R = 2. Then, K̃ = 12 and
B must be greater or equal to 2.4, which we used as
B. Since P = 12, we used the critical number of sam-
ples N = 25. The thick dashed (black) and thin solid
(red) lines in (a) respectively show the target signal
and reconstructed signal from samples shown by the
bullet. The sampling functions for n = 11, 12, and 13
used in this simulation are shown in Figure (b). The
reconstructed result was within the machine precision.
The number N = 25 of samples used in this simula-
tion is more than the number of unknown parameters,
K+K̃ = 16. To reduce the number of samples, we have
to determine the locations tk more efficiently than using
annihilating filter as in Eq. (13).

5. Derivatives of Generic Function

The result obtained in Section 3 can also be applied
to the problem of sampling and reconstruction of FRI
signals f(t) in Eq. (3) with

g0(t) =
K−1∑

k=0

Rk−1∑

r=0

ck,rs
(r)(t − tk),

where ϕ(t) is a given function that has the Fourier
transform ϕ̂(ω). This signal f(t) is the convolution of
g(t) with ϕ(t):

f(t) = (ϕ ∗ g)(t) =
∫ ∞

−∞
ϕ(t′)g(t − t′)dt′.

Then, the Fourier coefficient d̂p(f) of f(t) is expressed
using that of g(t) and the Fourier transform ϕ̂(ω) as

d̂p(f) = ϕ̂(
2pπ

τ
)d̂p(g),

where d̂p(f) can be obtained from dn by Eq. (7). Hence,
as long as ϕ̂( 2pπ

τ ) #= 0, applying the technique in Sec-
tion 3 to d̂p(g) = d̂p(f)/ϕ̂( 2pπ

τ ) enables us to retrieve
unknown time instants and then the signal coefficients.
Therefore, we have the following

Theorem 4: Assume that B in Eq. (5) satisfies
Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)

f(t)
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(a) Target signal (thick line) and samples (‘•’). The re-
constructed signal is within machine precision. The thin
line shows the lowpass approximation of f(t).
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(b) Sinc sampling functions for n = 11, 12, and 13.

Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (20).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
Then, K̃ = 8 and Theorem 4 requests that B must be
greater or equal to 16/15, which we used as B. Since P
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where ϕ(t) is a given function that has the Fourier
transform ϕ̂(ω). This signal f(t) is the convolution of
g(t) with ϕ(t):

g(t) =
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Then, the Fourier coefficient d̂p(g) of g(t) is ex-

pressed using that of g(t) and the Fourier transform
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where d̂p(f) can be obtained from dn by Eq. (7). Hence,
as long as ϕ̂( 2pπ

τ ) #= 0, applying the technique in Sec-
tion 3 to d̂p(g) = d̂p(f)/ϕ̂( 2pπ

τ ) enables us to retrieve
unknown time instants and then the signal coefficients.
Therefore, we have the following

Theorem 4: Assume that B in Eq. (5) satisfies
Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
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Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
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transform ϕ̂(ω). This signal f(t) is the convolution of
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g(t) =
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where f(t) is the stream of derivative of Diracs,
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the Fourier coefficient d̂p(g) of g(t) is expressed

using that of g(t) and the Fourier transform ŝ(ω) as
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(b) Sinc sampling functions for n = 11, 12, and 13.

Fig. 3 Simulation results for a piecewise polynomial of degree
2 with K = 4.

Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
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Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1

n=0 in Eq. (4)
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d̂p(g) = ŝ
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Eq. (??) and that Eq. (??) is true with P = $Bτ/2%.
The function ϕ(t) is assumed to satisfy ϕ̂(2pπ/τ) #= 0
for p = −P ∼ P . Then, the samples {dn}N−1
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using the sinc kernel are a sufficient characterization of
the τ -periodic FRI signal f(t) in Eq. (??).

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
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Theorem 4:

Assume that B in ψ(t) = Bsinc(Bt) satisfies

B ≥ 2KR

τ

(
> ρ =

K(R + 1)
τ

)

and that
N ≥ 2P + 1

with P = "Bτ/2#. If s(t) satisfies ŝ(2pπ/τ) $= 0 for
p = −P ∼ P , then the samples {dn}N−1

n=0 using the sinc
kernel are a sufficient characterization of the τ -periodic
stream of derivative of general pulses.

For example, let ϕ(t) be the centered cubic B-
spline function as

ϕ(t) = β3(t) = (β0 ∗ β0 ∗ β0 ∗ β0)(t),

where
β0(t) =

{
1 (|t| < 0.5),
0 (|t| ≥ 0.5).

It is easy to compute the derivative of B-spline of degree
p because of the relation

dβp(t)
dt

= βp−1(t + 1/2) − βp−1(t − 1/2)

shown in [2]. The parameters used in the simulation
were K = 4, Rk = 2 for k = 0 ∼ 3, and τ = 15.
Then, K̃ = 8 and Theorem 4 requests that B must be
greater or equal to 16/15, which we used as B. Since P
becomes 8, N have to be greater or equal to 17, which
we used as N . Because ϕ̂(ω) = {sinc(ω/2π)}4, we can
see that ϕ̂(2pπ/τ) $= 0.

A simulation result is shown in Figure 4. The thick
dashed (black) and thin solid (red) lines show the target
and reconstructed signals, respectively. Note that the
right end part around [12, 15) is completely flat and we
know that this signal is not bandlimited. The bullets
show the samples obtained using the sinc kernel. We
can see that the reconstructed signal is again within the
machine precision.

6. Conclusion

In this paper, we addressed the problem of sampling
and reconstruction of periodic piecewise polynomials
from samples obtained using the sinc kernel. Even
though this problem was discussed in the previous pa-
per, there was an error in a condition for the sinc kernel
and only reconstruction procedure using Fourier series
was shown. Hence, we first provided a correct condi-
tion for the sinc kernel, saying that we have to use a
bandwidth more than twice of the number of unknown
coefficients over period. Based on this result, we de-
rived the sampling theorem for the periodic piecewise
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(a) Target signal (thick line) and samples (‘•’). The re-
constructed signal is within machine precision. The thin
line shows the lowpass approximation of f(t).
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(b) Sinc sampling functions for n = 7, 8, and 9.

Fig. 4 Simulation results for an FRI signal with derivatives of
the cubic spline.

polynomials. We pointed out that, since the mapping
from a periodic stream of differentiated Diracs to the
periodic piecewise polynomial is not one-to-one, infor-
mation other than the periodic stream of differentiated
Diracs is necessary to uniquely recover the target sig-
nal. To this end, we used the average of the signal,
which is available as the Fourier coefficient for p = 0.
Then, the parameters in the piecewise polynomials are
successfully obtained, and the signal was perfectly re-
constructed. We further showed a sampling theorem for
FRI signals with derivatives of a given function. Our
future tasks include reduction of the number of samples
by retrieving the time instants more efficiently.
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+ŷ

2
.

60	




Values	
  of	
  Likelihood	
  Function�

Noiseless case	
 Noisy case	


t1

(t1 > t0 )
t0 t0

t1

(PSNR=0dB)	


61	




Coarse	
  to	
  Fine	
  Search �

Coarse�

Fine�
t0

t1

62	




Particle	
  Swarm	
  Optimization�

Global  best  position�

Velocity  of  particle�

Previous  position  of  particle�

t0

t1

Best  position  of  particle�

63	




Ex)	
  Reconstruction	
  Result�

	
  Original	
  Signal	
  
	
  CtoF	
  Search	
  
	
  Annihilating	
  Filter �

In case of K=2 and PSNR=0dB	


64	




0 5 10 15 20 25 30 35 40 45 50
-90

-80

-70

-60

-50

-40

-30

-20

-10

Mean	
  Squared	
  Error	
  for	
  tk	

65	


t0	
 t1	


0 5 10 15 20 25 30 35 40 45 50
-80

-70

-60

-50

-40

-30

-20

-10

SNR [ dB]	
 SNR [ dB]	


MLE (Proposed)	
 MLE (Proposed)	


SVD with/without Cadzow	
 SVD with/without Cadzow	




Mean	
  Squared	
  Error	
  for	
  ck	

66	


0 5 10 15 20 25 30 35 40 45 50
-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30 35 40 45 50
-60

-50

-40

-30

-20

-10

0

10

SNR [ dB]	
 SNR [ dB]	


c0	
 c1	


MLE (Proposed)	
MLE (Proposed)	


SVD with/without Cadzow	
 SVD with/without Cadzow	




Computational	
  Cost�
(sec)	


0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

K=2	
   K=3	
   K=4	
  

粗・精探索�

PSO	
  

従来手法�

CtoF search	


PSO 

Ann. Filter 

67	



